4,637 research outputs found

    Electron-phonon coupling close to a metal-insulator transition in one dimension

    Full text link
    We consider a one-dimensional system of electrons interacting via a short-range repulsion and coupled to phonons close to the metal-insulator transition at half filling. We argue that the metal-insulator transition can be described as a standard one dimensional incommensurate to commensurate transition, even if the electronic system is coupled to the lattice distortion. By making use of known results for this transition, we prove that low-momentum phonons do not play any relevant role close to half-filling, unless their coupling to the electrons is large in comparison with the other energy scales present in the problem. In other words the effective strength of the low-momentum transferred electron-phonon coupling does not increase close to the metal-insulator transition, even though the effective velocity of the mobile carriers is strongly diminished.Comment: 20 pages, REVTEX styl

    The old anticentre open cluster Berkeley 32: membership and fundamental parameters

    Full text link
    We have obtained medium-low resolution spectroscopy and BVI CCD imaging of Berkeley 32, an old open cluster which lies in the anticentre direction. From the radial velocities of 48 stars in the cluster direction we found that 31 of them, in crucial evolutionary phases, are probable cluster members, with an average radial velocity of +106.7 (sigma = 8.5) km/s. From isochrone fitting to the colour magnitude diagrams of Berkeley 32 we have obtained an age of 6.3 Gyr, (m-M)0 = 12.48 and E(B-V) = 0.10. The best fit is obtained with Z=0.008. A consistent distance, (m-M)0 ~= 12.6 +/- 0.1, has been derived from the mean magnitude of red clump stars with confirmed membership; we may assume (m-M)0 ~= 12.55 +/- 0.1. The colour magnitude diagram of the nearby field observed to check for field stars contamination looks intriguingly similar to that of the Canis Major overdensity.Comment: MNRAS, in press. Degraded resolution for Fig.

    Anomalous RR Lyrae stars(?). III. CM Leonis

    Get PDF
    Time series of B,V,I CCD photometry and radial velocity measurements from high resolution spectroscopy (R=30,000) covering the full pulsation cycle are presented for the field RR Lyrae star CM Leonis. The photometric data span a 6 year interval from 1994 to 1999, and allow us to firmly establish the pulsation mode and periodicity of the variable. The derived period P=0.361699 days (+/- 0.000001) is very close to the value published in the Fourth Edition of the General Catalogue of Variable Stars (P=0.361732 days). However, contrary to what was previously found, the amplitude and shape of the light curve qualify CM Leo as a very regular first overtone pulsator with a prominent hump on the rising branch of its multicolour light curves. According to an abundace analysis performed on three spectra taken near minimum light (0.42 < phase < 0.61), CM Leo is a metal-poor star with metal abundance [Fe/H]=-1.93 +/- 0.20. The photometric and radial velocity curves of CM Leo have been compared with the predictions of suitable pulsational models to infer tight constraints on the stellar mass, effective temperature, and distance modulus of the star. We derive a true distance modulus of CM Leo of (m-M)0=13.11 +/- 0.02 mag and a corresponding absolute magnitude of Mv=0.47 +/- 0.04. This absolute magnitude, once corrected for evolutionary and metallicity effects, leads to a true distance modulus of the Large Magellanic Cloud of (m-M)0=18.43 +/- 0.06 mag, in better agreement with the long astronomical distance scale.Comment: 14 pages, 10 figures, accepted for publication in MNRA

    Drug delivery applications of three-dimensional printed (3DP) mesoporous scaffolds

    Get PDF
    Mesoporous materials are structures characterized by a well-ordered large pore system with uniform porous dimensions ranging between 2 and 50 nm. Typical samples are zeolite, carbon molecular sieves, porous metal oxides, organic and inorganic porous hybrid and pillared materials, silica clathrate and clathrate hydrates compounds. Improvement in biochemistry and materials science led to the design and implementation of different types of porous materials ranging from rigid to soft two-dimensional (2D) and three-dimensional (3D) skeletons. The present review focuses on the use of three-dimensional printed (3DP) mesoporous scaffolds suitable for a wide range of drug delivery applications, due to their intrinsic high surface area and high pore volume. In the first part, the importance of the porosity of materials employed for drug delivery application was discussed focusing on mesoporous materials. At the end of the introduction, hard and soft templating synthesis for the realization of ordered 2D/3D mesostructured porous materials were described. In the second part, 3DP fabrication techniques, including fused deposition modelling, material jetting as inkjet printing, electron beam melting, selective laser sintering, stereolithography and digital light processing, electrospinning, and two-photon polymerization were described. In the last section, through recent bibliographic research, a wide number of 3D printed mesoporous materials, for in vitro and in vivo drug delivery applications, most of which relate to bone cells and tissues, were presented and summarized in a table in which all the technical and bibliographical details were reported. This review highlights, to a very cross-sectional audience, how the interdisciplinarity of certain branches of knowledge, as those of materials science and nano-microfabrication are, represent a growing valuable aid in the advanced forum for the science and technology of pharmaceutics and biopharmaceutics

    Monopoles, abelian projection, and gauge invariance

    Full text link
    A direct connection is proved between the Non-Abelian Bianchi Identities(NABI), and the abelian Bianchi identities for the 't Hooft tensor. As a consequence the existence of a non-zero magnetic current is related to the violation of the NABI's and is a gauge-invariant property. The construction allows to show that not all abelian projections can be used to expose monopoles in lattice configurations: each field configuration with non-zero magnetic charge identifies its natural projection, up to gauge transformations which tend to unity at large distances. It is shown that the so-called maximal-abelian gauge is a legitimate choice. It is also proved, starting from the NABI, that monopole condensation is a physical gauge invariant phenomenon, independent of the choice of the abelian projection.Comment: 9 pages, no figur

    Structural disconnection as a general technique to improve the dynamic and seismic response of structures: a basic model

    Get PDF
    Abstract The Base Isolation ( BI ) and the Tuned Mass Damper ( TMD ) represent two different techniques to reduce vibrations in building structures. Both these techniques may be considered as descending from an appropriate "disconnection" carried out on a given structure, whose global mass is subdivided in two parts, with a substantial difference in stiffness. The present work aims to study the characteristics of the disconnection and its effectiveness in reducing the dynamic response of a building structure subject to a base excitation. A simple 2- DOF "archetype" model has been developed to describe structural systems where a disconnection has been performed. This model has a constant total mass while stiffness and mass ratios, related to the two degrees of freedom, are taken as main variable parameters. Two distinct reference schemes ( BI -scheme and TMD -scheme) have been adopted in order to identify the specific part of the structure (respectively upper or lower) whose dynamic response should take advantage from the disconnection. A measurement of such advantage has been then proposed by means of different "gain parameters", related to each scheme. The behavior of the gain parameters has been depicted in various maps, each one defined for different base accelerations

    Real-Time Monitoring of Temperature-Dependent Structural Transitions in DNA Nanomechanical Resonators: Unveiling the DNA-Ligand Interactions for Biomedical Applications

    Get PDF
    Despite being widely recognized as of paramount importance in molecular biology, real-time monitoring of structural transitions in DNA complexes is currently limited to complex techniques and chemically modified oligonucleotides. Here, we show that nanomechanical resonators made of different DNA complexes, such as pristine dsDNA, ssDNA, and DNA intercalated with dye molecules or chemotherapeutic agents, are characterized by unique fingerprint curves when their flexural resonance frequency is tracked as a function of temperature. Such frequency shifts can be successfully used to monitor structural variations in DNA complexes, such as B-to-A form and helix-to-coil transitions, thus opening implications in both environmental studies─for example, trucking the effects of heavy metal exposure on human or vegetable DNA molecules─and in vitro experiments for the evaluation of the effects of drugs on patient DNA
    • …
    corecore