3 research outputs found

    Transcranial Direct Current Stimulation Enhances Neuroplasticity and Accelerates Motor Recovery in a Stroke Mouse Model

    Get PDF
    BACKGROUND: More effective strategies are needed to promote poststroke functional recovery. Here, we evaluated the impact of bihemispheric transcranial direct current stimulation (tDCS) on forelimb motor function recovery and the underlying mechanisms in mice subjected to focal ischemia of the motor cortex. METHODS: Photothrombotic stroke was induced in the forelimb brain motor area, and tDCS was applied once per day for 3 consecutive days, starting 72 hours after stroke. Grid-walking, single pellet reaching, and grip strength tests were conducted to assess motor function. Local field potentials were recorded to evaluate brain connectivity. Western immunoblotting, ELISA, quantitative real-time polymerase chain reaction, and Golgi-Cox staining were used to uncover tDCS-mediated stroke recovery mechanisms. RESULTS: Among our results, tDCS increased the rate of motor recovery, anticipating it at the early subacute stage. In this window, tDCS enhanced BDNF (brain-derived neurotrophic factor) expression and dendritic spine density in the peri-infarct motor cortex, along with increasing functional connectivity between motor and somatosensory cortices. Treatment with the BDNF TrkB (tropomyosin-related tyrosine kinase B) receptor inhibitor, ANA-12, prevented tDCS effects on motor recovery and connectivity as well as the increase of spine density, pERK (phosphorylated extracellular signal-regulated kinase), pCaMKII (phosphorylated calcium/calmodulindependent protein kinase II), pMEF (phosphorylated myocyte-enhancer factor), and PSD (postsynaptic density)-95. The tDCSpromoted rescue was paralleled by enhanced plasma BDNF level, suggesting its potential role as circulating prognostic biomarker. CONCLUSIONS: The rate of motor recovery is accelerated by tDCS applied in the subacute phase of stroke. Anticipation of motor recovery via vicariate pathways or neural reserve recruitment would potentially enhance the efficacy of standard treatments, such as physical therapy, which is often delayed to a later stage when plastic responses are progressively lower

    Functional Correlates of Striatal Dopamine Transporter Cerebrospinal Fluid Levels in Alzheimerā€™s Disease: A Preliminary <sup>18</sup>F-FDG PET/CT Study

    No full text
    The aim of our study was to investigate regional glucose metabolism with 18F-FDG positron emission tomography/computed tomography in a population of patients with Alzheimerā€™s disease (AD) in relation to cerebrospinal (CSF) levels of striatal dopamine transporter (DAT). All patients underwent lumbar puncture and received a biomarker-based diagnosis of AD. Differences in regional brain glucose metabolism were assessed by Statistical Parametric Mapping version 12 with the use of age, gender, and MMSE as covariates in the analysis. A positive correlation between CSF DAT levels and glucose metabolism at the level of two brain areas involved in the pathophysiological process of Alzheimerā€™s disease, the substantia nigra and the posterior cingulate gyrus, has been highlighted. Results indicate that patients with higher CSF DAT levels have a better metabolic pattern in two key zones, suggesting less advanced disease status in patients with more conserved dopaminergic systems

    Effects of preā€operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    No full text
    We aimed to determine the impact of pre-operative isolation on postoperative pulmonary complications after elective surgery during the global SARS-CoV-2 pandemic. We performed an international prospective cohort study including patients undergoing elective surgery in October 2020. Isolation was defined as the period before surgery during which patients did not leave their house or receive visitors from outside their household. The primary outcome was postoperative pulmonary complications, adjusted in multivariable models for measured confounders. Pre-defined sub-group analyses were performed for the primary outcome. A total of 96,454 patients from 114 countries were included and overall, 26,948 (27.9%) patients isolated before surgery. Postoperative pulmonary complications were recorded in 1947 (2.0%) patients of which 227 (11.7%) were associated with SARS-CoV-2 infection. Patients who isolated pre-operatively were older, had more respiratory comorbidities and were more commonly from areas of high SARS-CoV-2 incidence and high-income countries. Although the overall rates of postoperative pulmonary complications were similar in those that isolated and those that did not (2.1% vs 2.0%, respectively), isolation was associated with higher rates of postoperative pulmonary complications after adjustment (adjusted OR 1.20, 95%CI 1.05-1.36, p = 0.005). Sensitivity analyses revealed no further differences when patients were categorised by: pre-operative testing; use of COVID-19-free pathways; or community SARS-CoV-2 prevalence. The rate of postoperative pulmonary complications increased with periods of isolation longer than 3 days, with an OR (95%CI) at 4-7 days or &gt;= 8 days of 1.25 (1.04-1.48), p = 0.015 and 1.31 (1.11-1.55), p = 0.001, respectively. Isolation before elective surgery might be associated with a small but clinically important increased risk of postoperative pulmonary complications. Longer periods of isolation showed no reduction in the risk of postoperative pulmonary complications. These findings have significant implications for global provision of elective surgical care
    corecore