175 research outputs found

    Ultrastructure, composition, and 87Sr/86Sr dating of shark teeth from lower miocene sediments of southwestern Peru

    Get PDF
    Bioapatite of fossil bone and teeth is susceptible to alteration and ion exchange during burial and diagenesis, varying its Sr content through the geological time. Nevertheless, fossil shark teeth are a powerful proxy for both chronostratigraphic and paleoecological reconstructions, thanks to the presence of the enameloid, a hard outer layer consisting of resistant fluorapatite crystallites. Here, we analyze fossil shark teeth from the Miocene sediments of the Chilcatay Formation in the Pisco Basin (southwestern Peru) with the aim of dating poorly constrained strata in this region. (Ultra)structural and compositional analyses on fossil lamniform and carcharhiniform teeth are performed through macroscopical observations, optical microscopy and SEM-EDS for evaluating the preservation state of the collected teeth. Shark teeth display a compact and well preserved outer enameloid layer formed by highly ordered bundles of crystallites that is distinctly separated by a more porous and heterogeneous inner core of dentine featuring diagenetic artefacts and microborings. Compositional mapping highlights differences in distribution of Ca, P, F, and S in the enameloid and dentine, and chemical results show a Sr content that is consistent with the range reported for extant shark teeth. The best preserved teeth were selected for Strontium Isotope Stratigraphy (SIS), measuring the 87Sr/86Sr values in the enameloid and obtaining numerical (absolute) age estimates. At the Ica River Valley, SIS dates the Chilcatay strata to the Burdigalian (between 19.1 and 18.1 Ma), in agreement with previous radiometric, isotopic and biostratigraphic ages obtained in the same region. At Media Luna, the Chilcatay strata are dated herein for the first time, resulting in a slightly older age of 21.8–20.1 Ma (late Aquitanian–early Burdigalian). These results strengthen the notion that the Sr-ratio of shark teeth can be successfully applied for obtaining reliable age estimates via SIS

    Faulting of a turbidite sandstone-siltstone successions: the case study of the Macigno Formation, Tuscany, Italy

    Get PDF
    Faults in siliciclastic rocks are characterized by a great variability of fault zone architecture and relative permeability properties. This is because siliciclastic rocks (i.e turbidites) are often represented by alternating beds of various thickness and grain size forming a succession of strata with contrasting mechanical properties. For example, the presence of sandstone and clay-rich layers is responsible for the simultaneous occurrence of brittle and ductile deformation, known as “clay smear structures”. Moreover, numerous studies have identified grain size as one of the main influencing factors for fault nucleation processes and fracture intensity in the damage zone. In this work, we present the results of field and laboratory analyses performed on the Macigno Formation cropping out along the coast of western Tuscany. Here, the Macigno Formation is represented by Late Oligocene foredeep siliciclastic succession dominated by turbiditic sandstones with minor siltstones, mudstones, marls and shales. Thin section and 3D analyses, performed by X-ray Synchrotron tomography, allowed us to characterize the grain size and grain and cement composition of studied rocks. Grain size varies from channelized fine-grained sandstones to granule-conglomerates beds (0.006 mm to 4 mm) alternating with heterolithic levee strata of siltstones to fine-grained sandstones (0.0035-0.008 mm). The lithic components consist of metamorphic rocks by 70-80%, magmatic rocks by 15-20% and sedimentary rocks by 5-15%. The turbidite beds are normally well-cemented (by quartz and calcite) and heavily faulted and fractured. Investigated faults show dip-, oblique- and and strike-slip motion and their displacement range from 10s of centimetres to 10s of metres. We documented how both the grain size and the mechanical properties of the alternating beds strongly control the fault zone architecture, in particular in terms of damage zone thickness and fracture frequency. The fault rock types (i.e. breccia vs. gauge) are strictly related to the amount of displacement as well as to the grain size and the cementation of the sandstone. Furthermore, the development of clay smear structures are enhanced by the presence of interbedded thin clay-rich layers

    Pleistocene slope, shallow-marine and continental deposits of eastern central Italy wedge-top basin: a record of sea-level changes and mountain building.

    Get PDF
    This guidebook to Pleistocene sediments exposed in eastern central Italy has been prepared for the PRE-3 geological field trip accompanying the XXI INQUA Congress held in Rome, Italy, in July 2023. It is designed to provide an overview of the sedimentological features, stratigraphic architecture and basin evolutionary steps during the Pleistocene of the central portion of the Periadriatic basin (Central Periadriatic Basin), a N-S oriented foreland basin system associated to the Central Apennine Outer Orogenic Wedge. The Central Periadriatic Basin stretches along the Marche and Abruzzo regions and is an excellent example of an evolving mountain chain and associated deep-marine to fluvial-alluvial foredeep and wedge-top basin system. By integrating surface and subsurface datasets, this field trip affords a fine west to east transect through the Pleistocene basin-fill in southern Marche, where exposures allow a close examination of sedimentary facies and architecture of depositional systems. The basinfill succession includes coarse-grained submarine canyon-fills encased in slope mudstones, mixed beachface-shoreface conglomerates and sandstones, and alternating conglomerate and mudstone bodies interpreted as fluvial-channel and floodplain deposits, respectively. The analysis of facies architecture and discontinuity surfaces will allow the attendees to understand the relative role of sea-level changes, sediment supply, and thrust front propagation inside the foreland basins system as several factors controlling the stratigraphic record

    Integrating traditional field methods with emerging digital techniques for enhanced outcrop analysis of deep water channel-fill deposits

    Get PDF
    The development of emerging digital technologies that allow the collection and analysis of field data represents a significant innovation in field-based geological studies. The integration of these digital techniques with traditional sedimentological field methods facilitates considerable improvements in outcrop characterization. An example of this integrated modern approach for geological data collection is employed for the detailed characterization of a turbidite channel-lobe system of the Gorgoglione Flysch Formation in Southern Italy. The study area, exposed above the village of Castelmezzano, has been measured and described in detailed stratigraphic sections, providing data for both sedimentological analysis and correlation of the stratigraphy. In order to gain a complete perspective on the exposure and stratigraphic elements, analysis of physical outcrop data was enhanced by the use of high-resolution Gigapixel imagery and 3D photogrammetric outcrop reconstructions. The Santa Maria section has been assessed in terms of vertical and lateral facies stacking arrangements and subdivided into two component facies associations separated by a prominent concave-up erosional boundary. The lower facies association, interpreted as a frontal lobe complex, consists of tabular, thick-bedded coarse sandstones interbedded with persistent heterolithic packages of thin-bedded sandstones and mudstones, and minor soft-sediment deformed strata. The upper facies association represents the infill of a channel-form and consists of a basal conglomerate, passing gradually upwards into massive amalgamated sandstones overlain by large-scale cross-laminated sandstones. The excellent exposure of the Santa Maria section records the complete evolution of a channel-lobe system, transitioning from frontal lobe deposition through channel incision and bypass, to progressive backfilling. This study shows how facies characterization, stratigraphic correlations and reconstruction of the depositional architectures have been substantially enhanced by the use of emerging digital techniques for geological data collection

    Distribution and paleoenvironmental framework of middle Miocene marine vertebrates along the western side of the lower Ica Valley (East Pisco Basin, Peru).

    Get PDF
    We report 130 vertebrate fossils preserved as bony elements and the co-occurring assemblage of fish teeth and spines from the lower strata of the Pisco Formation exposed along the western side of the lower Ica Valley (East Pisco Basin, Peru). Geological mapping at 1:10,000 scale reveals that all these fossils originate from the Langhian–Serravallian P0 allomember. In the study area, P0 is up to ∼40 m thick and features a sandy lower portion, reflecting shoreface deposition, that fines upwards into a package of offshore silts. Marine vertebrates only occur in the lower sandy layers and include whales, dolphins, reptiles, birds, and bony and cartilaginous fishes. The reconstructed paleoenvironment is consistent with a warm-water, marginal marine setting with a strong connection to the open ocean. This work helps to elucidate the rich yet still poorly understood middle Miocene portions of the Pisco Formation, and highlights the need to conserve this outstanding Fossil-Lagerstätte

    Stratigraphic framework of the late Miocene to Pliocene Pisco Formation at Cerro Colorado (Ica Desert, Peru).

    Get PDF
    This paper describes a 200 m-thick section of the Pisco Formation exposed at Cerro Colorado, an important fossiliferous site in the Ica desert. In order to properly place the fauna in its correct relative position, this study establishes the stratigraphic framework within which the different fossil-bearing intervals of this site can be compared and may prove invaluable in future high-resolution studies on the faunal change. Most of the Pisco Formation deposits exposed at Cerro Colorado consist of gently dipping fine-grained sandstones, diatomaceous siltstones and diatomites with minor ash layers and dolomites deposited within nearshore and offshore settings. To facilitate detailed stratigraphic correlations within the Pisco strata for a 30 km2 area, eight marker beds have been defined and large-scale (1:10,000 scale) geological mapping conducted to determine fault positions, styles and offsets. The geological map shows that there are two important angular unconformities in the study area. The first one is the interformational basal unconformity of the Pisco Formation against folded, faulted, and planated Oligo-Miocene rocks of the Chilcatay Formation. The second is a low-angle intraformational erosional discontinuity of up to 4° angular discordance that allows the subdivision of the Pisco stratigraphy exposed in the study area into two informal allomembers. Dating of the exposed succession by diatom biostratigraphy suggests that the age of the lower allomember is late Miocene, whereas the upper allomember is late Miocene or younger

    Facies analysis, stratigraphy and marine vertebrate assemblage of the lower Miocene Chilcatay Formation at Ullujaya (Pisco basin, Peru)

    Get PDF
    This paper is the first integrated account of the sedimentology, stratigraphy and vertebrate paleontology for the marine strata of the Chilcatay Formation exposed at Ullujaya, Pisco basin (southern Peru). An allostratigraphic framework for the investigated strata was established using geological mapping (1:4,000 scale) and conventional sedimentary facies analysis and resulted in recognition of two unconformity-bounded allomembers (designated Ct1 and Ct2 in ascending order). The chronostratigraphic framework is well constrained by integration of micropaleontological data and isotope geochronology and indicates deposition during the early Miocene. The marine vertebrate fossil assemblage is largely dominated by cetaceans (odontocetes), whereas isolated teeth and spines indicate a well-diversified elasmobranch assemblage. Our field surveys, conducted to evaluate the paleontological sensitivity of the investigated strata, indicate that vertebrate remains only came from a rather restricted stratigraphic interval of the Ct1 allomember and reveal the high potential for these sediments to yield abundant and scientifically significant fossil assemblages

    Facies analysis, stratigraphy and marine vertebrate assemblage of the lower Miocene Chilcatay Formation at Ullujaya (Pisco basin, Peru)

    Get PDF
    This paper is the first integrated account of the sedimentology, stratigraphy and vertebrate paleontology for the marine strata of the Chilcatay Formation exposed at Ullujaya, Pisco basin (southern Peru). An allostratigraphic framework for the investigated strata was established using geological mapping (1:4,000 scale) and conventional sedimentary facies analysis and resulted in recognition of two unconformity-bounded allomembers (designated Ct1 and Ct2 in ascending order). The chronostratigraphic framework is well constrained by integration of micropaleontological data and isotope geochronology and indicates deposition during the early Miocene. The marine vertebrate fossil assemblage is largely dominated by cetaceans (odontocetes), whereas isolated teeth and spines indicate a well-diversified elasmobranch assemblage. Our field surveys, conducted to evaluate the paleontological sensitivity of the investigated strata, indicate that vertebrate remains only came from a rather restricted stratigraphic interval of the Ct1 allomember and reveal the high potential for these sediments to yield abundant and scientifically significant fossil assemblages

    Stratigraphic framework of the late Miocene Pisco Formation at Cerro Los Quesos (Ica Desert, Peru)

    Get PDF
    The enormous concentration of marine vertebrates documented within the Pisco Formation is unique for Peru and South America and places this unit among the prime fossil Lagerstätten for Miocene to Pliocene marine mammals worldwide. In order to provide a robust stratigraphic framework for the fossil-bearing locality of Cerro Los Quesos, this study presents a 1:10,000 scale geological map covering an area of about 21 km2, a detailed measured section spanning 290 m of strata, and a refined chronostratigraphy for the studied succession well constrained by diatom biostratigraphy and high-resolution 40Ar/39Ar isotopic dating of three interbedded ash layers. Within the apparently monotonous, diatomite-dominated sedimentary section, the Pisco Formation has been subdivided into six local members, with stratigraphic control over the different outcrops facilitated by the establishment of a detailed marker bed stratigraphy based on fifteen readily distinguishable sediment layers of different nature

    Deciphering the tectono-stratigraphic evolution of the East Pisco Basin (southern Peru): new insights from the geological mapping of its central portion

    Get PDF
    The Cenozoic fill of the East Pisco Basin (EPB) preserves the sedimentary record of several episodes of deformation of the forearc crust along the Peruvian margin. The 1:50,000 scale geological map presented here covers an area of about 1,000 km2 lying astride the Ica River and, by establishing a first-order tectonostratigraphic frame for the exposed mid-Eocene–upper Miocene succession, contributes to our understanding of the timing and mode of basin filling and deformation. In the study area, deposition initiated onto the PaE0 nonconformity during the middle Eocene time and continued under an extensional regime until early Oligocene time, with a break in deposition recorded by the OE0 unconformity separating the Paracas and Otuma sequences (megasequence P). During this time interval, a single forearc Pisco Basin extended between an offshore outer forearc high and the Western Cordillera. An Oligocene relative sea-level fall, probably resulting from a combination of tectonic inversion and multiple events of eustatic lowstand, led the Pisco Basin to become subaerially exposed. Evidence for this phase of deformation is recorded by the conspicuous CE0 angular unconformity interposed between megasequences P and N. The oldest normal fault populations documented here consist of NNW- and ENE-trending faults largely predating the CE0 erosional hiatus. This widespread extensional faulting was accompanied by the exhumation of the Outer Shelf High-Coastal Cordillera, which segmented the earlier, Paleogene Pisco Basin into the present-day inner EPB and outer West Pisco Basin. Different tectonic processes have been invoked to explain the Oligocene uplift of the extensional Peruvian forearc basins and formation of the Outer Shelf High, including crustal thickening by underplating at an erosive margin or inversion by propagation of basement-rooted, westverging thrust faults. By earliest Miocene time, uplift ceased and subduction erosion and thinning of the overriding plate resulted in renewed subsidence, rise in relative sea level, and marine transgression over the CE0 unconformity with deposition of the lower Miocene Chilcatay and middle to upper Miocene Pisco composite sequences (megasequence N). The early Miocene phase of extension and associated subsidence was followed by a late Miocene contractional tectonic event, with shortening being accommodated by: (i) oblique-slip (reverse plus dextral) reactivation of inherited NE-trending extensional faults, and development of associated fault-parallel hanging-wall anticlines; and (ii) renewal tectonic uplift of the southwestern basin margin, as suggested by the fanning geometry of the northeast-dipping strata of the Pisco composite sequence and their progressive onlap on top of the basement towards the northeastern, internal margin of the basin
    corecore