2,884 research outputs found

    On integrating a proprietary and a commercial architecture for optimal BIST performances in SoCs

    Get PDF
    This paper presents the integration of a proprietary hierarchical and distributed test access mechanism called HD2BIST and a BIST insertion commercial tool. The paper briefly describes the architecture and the features of both the environments and it presents some experimental results obtained on an industrial So

    Morphometric study on tadpoles of Bombina variegata (Linnaeus, 1758) (Anura; Bombinatoridae)

    Get PDF
    The tadpoles of Yellow-bellied toad (Bombina variegata) can be easily recognized from other Italian anuran species, except those of B. pachypus (though the two congeneric species are allopatric). In this paper we report morphometric data on B. variegata tadpoles from a Lombard population living near a torrent at 450 m a.s.l. On a sample of 264 tadpoles (stages 19-44, according to Gosner, 1960) we measured the following five variables: snout-vent length, tail length, maximum tail height, total length and weight. We found a slight allometric relationship between snout-vent length and tail length, while, as expectes,.the weight is nearly proportional to the cube of linear measures. According to literature data, our results point to highly constant proportions during the development phases up to prometamorphic stages. The ratio between snout-vent length and tail length was about 0.75 during the whole growing phase, while from stage 42 the proportion increases as the resorption of the tail starts

    An effective distributed BIST architecture for RAMs

    Get PDF
    The present paper proposes a solution to the problem of testing a system containing many distributed memories of different sizes. The proposed solution relies in the development of a BIST architecture characterized by a single BIST processor, implemented as a microprogrammable machine and able to execute different test algorithms, a wrapper for each SRAM including standard memory BIST modules, and an interface block to manage the communications between the SRAM and the BIST processor. Both area overhead and routing costs are minimized, and a scan-based approach allows full diagnostic capabilities of the faults possibly detected in the memories under test

    A failure mode and effect analysis (FMEA)-based approach for risk assessment of scientific processes in non-regulated research laboratories

    Get PDF
    AbstractNowadays, Quality Management tools such as failure mode and effect analysis (FMEA) are widely used throughout the aeronautical, automotive, software, food services, health care and many other industries to sustain and improve quality and safety. The increasing complexity of scientific research makes it more difficult to maintain all activities under control, in order to guarantee validity and reproducibility of results. Even in non-regulated research, scientists need to be supported with management tools that maximize study performance and outcomes, while facilitating the research process. Frequently, steps that involve human intervention are the weak links in the process. Risk analysis therefore gives considerable benefit to analytical validation, assessing and avoiding failures due to human error, potential imprecision in applying protocols, uncertainty in equipment function and imperfect control of materials. This paper describes in detail how FMEA methodology can be applied as a performance improvement tool in the field of non-regulated research, specifically on a basic Life Sciences research process. We chose as "pilot process" the selection of oligonucleotide aptamers for therapeutic purposes, as an example of a complex and multi-step process, suitable for technology transfer. We applied FMEA methodology, seeking every opportunity for error and its impact on process output, and then, a set of improvement actions was generated covering most aspects of laboratory practice, such as equipment management and staff training. We also propose a useful tool supporting the risk assessment of research processes and its outputs and that we named "FMEA strip worksheet." These tools can help scientists working in non-regulated research to approach Quality Management and to perform risk evaluation of key scientific procedures and processes with the final aim to increase and better control efficiency and efficacy of their research

    HD2BIST: a hierarchical framework for BIST scheduling, data patterns delivering and diagnosis in SoCs

    Get PDF
    Proposes HD2BIST, a complete hierarchical framework for BIST scheduling, data patterns delivering, and diagnosis of a complex system including embedded cores with different test requirements as full scan cores, partial scan cores, or BIST-ready cores. The main goal of HD2BIST is to maximize and simplify the reuse of the built-in test architectures, giving the chip designer the highest flexibility in planning the overall SoC test strategy. HD2BIST defines a test access method able to provide a direct “virtual” access to each core of the system, and can be conceptually considered as a powerful complement to the P1500 standard, whose main target is to make the test interface of each core independent from the vendo

    Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma.

    Get PDF
    SHH Medulloblastoma (SHH-MB) is a pediatric brain tumor characterized by an inappropriate activation of the developmental Hedgehog (Hh) signaling. SHH-MB patients treated with the FDA-approved vismodegib, an Hh inhibitor that targets the transmembrane activator Smoothened (Smo), have shown the rapid development of drug resistance and tumor relapse due to novel Smo mutations. Moreover, a subset of patients did not respond to vismodegib because mutations were localized downstream of Smo. Thus, targeting downstream Hh components is now considered a preferable approach. We show here that selective inhibition of the downstream Hh effectors HDAC1 and HDAC2 robustly counteracts SHH-MB growth in mouse models. These two deacetylases are upregulated in tumor and their knockdown inhibits Hh signaling and decreases tumor growth. We demonstrate that mocetinostat (MGCD0103), a selective HDAC1/HDAC2 inhibitor, is a potent Hh inhibitor and that its effect is linked to Gli1 acetylation at K518. Of note, we demonstrate that administration of mocetinostat to mouse models of SHH-MB drastically reduces tumor growth, by reducing proliferation and increasing apoptosis of tumor cells and prolongs mouse survival rate. Collectively, these data demonstrate the preclinical efficacy of targeting the downstream HDAC1/2-Gli1 acetylation in the treatment of SHH-MB

    A systematic review on omics data (metagenomics, metatranscriptomics, and metabolomics) in the role of microbiome in gallbladder disease

    Get PDF
    Microbiotas are the range of microorganisms (mainly bacteria and fungi) colonizing multicellular, macroscopic organisms. They are crucial for several metabolic functions affecting the health of the host. However, difficulties hamper the investigation of microbiota composition in cultivating microorganisms in standard growth media. For this reason, our knowledge of microbiota can benefit from the analysis of microbial macromolecules (DNA, transcripts, proteins, or by-products) present in various samples collected from the host. Various omics technologies are used to obtain different data. Metagenomics provides a taxonomical profile of the sample. It can also be used to obtain potential functional information. At the same time, metatranscriptomics can characterize members of a microbiome responsible for specific functions and elucidate genes that drive the microbiotas relationship with its host. Thus, while microbiota refers to microorganisms living in a determined environment (taxonomy of microorganisms identified), microbiome refers to the microorganisms and their genes living in a determined environment and, of course, metagenomics focuses on the genes and collective functions of identified microorganisms. Metabolomics completes this framework by determining the metabolite fluxes and the products released into the environment. The gallbladder is a sac localized under the liver in the human body and is difficult to access for bile and tissue sampling. It concentrates the bile produced in the hepatocytes, which drains into bile canaliculi. Bile promotes fat digestion and is released from the gallbladder into the upper small intestine in response to food. Considered sterile originally,recent data indicate that bile microbiota is associated with the biliary tract’s inflammation and carcinogenesis. The sample size is relevant for omic studies of rare diseases, such as gallbladder carcinoma. Although in its infancy, the study of the biliary microbiota has begun taking advantage of several omics strategies, mainly based on metagenomics, metabolomics, and mouse models. Here, we show that omics analyses from the literature may provide a more comprehensive image of the biliary microbiota. We review studies performed in this environmental niche and focus on network-based approaches for integrative studies
    • …
    corecore