
05 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

HD2BIST: a hierarchical framework for BIST scheduling, data patterns delivering and diagnosis in SoCs / Benso,
Alfredo; Chiusano, SILVIA ANNA; DI CARLO, Stefano; Prinetto, Paolo Ernesto; Ricciato, F.; Spadari, M.; Zorian, Y.. -
STAMPA. - (2000), pp. 892-901. ((Intervento presentato al convegno IEEE International Test Conference (ITC) tenutosi
a Atlantic City (NJ), USA nel 3-5 Oct. 2000.

Original

HD2BIST: a hierarchical framework for BIST scheduling, data patterns delivering and diagnosis in SoCs

Publisher:

Published
DOI:10.1109/TEST.2000.894300

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499850 since:

IEEE

HD2BIST: a hierarchical frame-
work for BIST scheduling, data
patterns delivering and diagnosis
in SoCs
Authors: Benso A., Chiusano S., Di Carlo S., Prinetto P., Ricciato F., Spadari M., Zorian Y.,

Published in the Proceedings of the IEEE International Test Conference (ITC), 3-5 Oct. 2000, Atlantic
City (NJ), USA.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=894300

DOI: 10.1109/TEST.2000.894300

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=894300
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=894300
http://dx.doi.org/10.1109/TEST.2000.894249
http://dx.doi.org/10.1109/TEST.2000.894249

HD2BIST: a Hierarchical Framework for BIST Scheduling, Data patterns
delivering and diagnosis in SoCs

Alfredo BENSO, Silvia CHIUSANO, Stefano DI CARLO,
Paolo PRINETTO, Fabio RICCIATO

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso duca degli Abruzzi 24 - I-10129, Torino, Italy
Email: {benso, chiusano, dicarlo, prinetto, ricciato}@polito.it

http://www.testgroup.polito.it

Maurizio SPADARI
LSI Logic

Agrate Brianza, Italy
Email: maurizio@lsil.com

Yervant ZORIAN
LogicVIsion

San Jose CA, USA
Email: zorian@lvision.com

Abstract1

This paper proposes HD2BIST, a complete hierarchical
framework for BIST scheduling, data patterns delivering,
and diagnosis of a complex system including embedded-
cores with different test requirements as Full Scan cores,
Partial Scan cores, or BIST-ready cores. The main goal of
HD2BIST is to maximize and simplify the reuse of the
built-in test architectures, giving the chip designer the
highest flexibility in planning the overall SoC test
strategy. HD2BIST defines a Test Access Method (TAM)
able to provide a direct “virtual” access to each core of
the system, and can be conceptually considered as a
powerful complement to the P1500 standard, whose main
target is to make the test interface of each core
independent from the vendor.

1 This work was partially supported by POLITECNICO DI TORINO
under the project GIOVANI RICERCATORI 1999.

1. Introduction
In the last years, the significant growth of digital system
applications such as digital communication systems, led to
a strong competition in terms of quality and costs. With
the increasing IC’s complexity, the trend is to integrate in
a single chip all the devices and functions of a system.
This new philosophy leads to a radical change in the
project flow.

The need of reducing time-to-design and development
costs have driven to resort to reusability in both hardware
and software designs. In system design, the availability of
a big variety of pre-designed cores, provides designers the
possibility of integrating in the same device, usually called
System-On-Chip (SOC), a large number of different
functional blocks and memories of various kind, size and
access methods. Thus, reusability is nowadays considered
as one of the dimensions of the design space, and Design-
for-Reusability rules are systematically followed in most
design centers. Since testing is worldwide recognized as
one of the major components of electronic system costs,
reusability should not be limited to hardware cores, but

extended to their entire test-related issues, including test
structures and strategies [1]. One of the most commonly
used techniques to reuse the test strategy is to provided
cores with Built-In-Self-Test (BIST) structures, which
greatly simplify the test execution and its reuse at different
stages of the design cycle.

Cores, unlikely components on a circuit board, need to be
tested after being embedded. This is due to the fact that
components on a board are already manufactured and
tested by the vendor. When dealing with embedded cores
instead, the vendor can, at most, guarantee the goodness of
the core description but is the chip integrator who should
test the core after its integration in the SoC. Usually the
chip integrator has not a good knowledge of the core
structure, and has to rely on the test strategies provided by
the core vendor, who, on the other hand, has to define test
strategies, patterns, and protocols without knowing neither
the target technology nor the end-system where the core
will be integrated. This is a critical issue in the embedding
process because the application in which the core is
integrated may strongly influence the test strategy in terms
of fault-coverage, power consumption, and silicon area.
The test strategy becomes therefore a key point in the
characterization of the core with equal importance on the
core functional behavior.

Moreover, physical constraints often limit the possibility
of testing concurrently all the embedded cores. This is due
to the fact that BIST and test execution in general,
typically results in a circuit activation rate higher than the
one of normal operation mode. Parameter as power
consumption and noise result significantly stressed, and an
over-dissipation of power may seriously damage the
device. This problem can be solved if a scheduling
mechanism of the different test sessions of the cores is
implemented and supported in the SoC.

Eventually, the SoC that is today designed integrating
different embedded cores might become tomorrow a core
to be used as an embedded entity in another SoC.
Consequently it is necessary to define test architectures
able to support a hierarchical design flow.

In conclusion, in designing a SoC, the chip integrator
should:

• Provide full accessibility to all the embedded cores in
order to test and diagnose possible faults;

• Implement a flexible test management strategy in order
to overcome the limited freedom due to the test
structures already implemented in the cores;

• Design the SoC using a vertical paradigm, thinking
that the design might be reused in future as an
embedded core itself.

Most of the approaches proposed so far rely on a single
controller to perform device level BIST scheduling. [2]
and [3] propose a centralized controller, implementing the
scheduling of the BIST sessions through the activation of
one session at a time. [4] introduces an IEEE 1149.1 based
hierarchical test access architecture used to manage the BS
logic of complex IC designs containing many embedded
cores. In order to reduce the routing cost, [5] proposes a
distributed architecture, where intermediate blocks link the
units under test to a centralized controller, and are used to
control and activate the test of a sub-set of BISTed blocks.
In [6], the authors present HDBIST, a hierarchical and
distributed approach to support BIST scheduling of BIST-
ready embedded cores. Despite the novelty of the
approaches, both the modularity and the flexibility of the
architectures are still limited, and none of the proposed
solutions support BIST as well as scan-based tests of full
or partial-scan cores.

This paper proposes a Hierarchical-Distributed-Data BIST
architecture (HD2BIST), which supports the integration of
embedded cores with different test requirements, as Full
Scan cores, Partial Scan cores, or BIST-ready cores.
HD2BIST allows adding to the SoC design a high degree
of reusability and flexibility in terms of:

• Test structure: the hardware inserted to manage the
different test strategies of the embedded cores is
customizable on a trade-off among routing, area, and
test length.

• Scheduling: the HD2BIST structure allows to apply
and/or activate and check the test procedures of each
core of the system in any possible order, also resorting
to complex scheduling control flow mechanisms as
“wait” and conditional operations.

• Test Access Protocol: the approach defines a unified
Test Access Method (TAM) to the different cores of
the system, independent from their built-in test access
protocols.

• Hierarchy: the HD2BIST is completely reusable during
different phases of the product life cycle (horizontal
reuse), and at different levels of integration (vertical
reuse).

The main goal of the HD2BIST architecture is to
maximize and simplify the reuse of the built-in test
architectures, giving the chip designer the highest
flexibility in planning the overall SoC test strategy.
HD2BIST defines a Test Access Method (TAM) able to
provide a direct “virtual” access to each core of the
system, and can be conceptually considered as a powerful
complement to the P1500 standard [7] [8] (Figure 1),
whose main target is to make the test interface of each
core independent from the vendor.

Test PatternTest Pattern
Source/SinkSource/Sink

TAPTAP

WrapperWrapper

TAM:TAM:
Test Data BusTest Data Bus

TAM:TAM:
Test Control BusTest Control Bus

TAM:TAM:
Test Control BusTest Control Bus

TAM:TAM:
Test Control BusTest Control Bus

Chip levelChip level
Test ProcessorTest Processor

P1500

HD2BIST

Core

Figure 1 HD2BIST Basic Architecture

The paper is organized as follows: Section 2 presents the
main features of the proposed approach, whereas Section
3 details its RT-level implementation. Section 4 presents
some interesting experimental results obtained on two
industrial case studies. Finally, Section 5 draws some
conclusions.

2. Architecture overview
The key idea is to distribute test data to each core through
a Test Bus (TBUS). Each core uses the bus to gather the
test data inputs and to send out the test data outputs. Each
core is connected to the TBUS through ad-hoc interfaces
called Test Blocks (TB).

The number of devices (i.e., cores) connected to the
TBUS is not conceptually limited, and depends only on
the project size. Data flowing on the bus are divided into:

• Static signals, which change only few times in a test
session (usually at the beginning and at the end of the
test). They are used to configure the test interfaces
(TBs) and to start and stop the test execution of each
core.

• Dynamic signals, which change many times in the test
session and include test data patterns, diagnosis data,
scan enable, etc…

Consequently, we logically split the TBUS into two
different busses:

• The Test Control Bus (TCB), in charge of transmitting
static signals;

• The Test Data Bus (TDB), in charge of transmitting
dynamic signals and designed in order to support the
typical test approaches used in core’s testing like Full
scan, Partial Scan, or BIST.

In the reminder of this paper we will mainly focus on the
Test Data Bus, since the main functionality’s of the Test
Control Bus can be found in [5]. The next sections will
briefly summarize the most innovative aspects of the
HD2BIST architecture in terms of hierarchy, distributed

test management, scheduling, and RT-level
implementation.

2.1. Hierarchy
One of the most important test requirements highlighted in
the introduction is the need to support a hierarchical
approach in the definition of the test strategy.

Using the HD2BIST approach, it is possible to partition a
complex system in a number of subsystems, each managed
by a dedicated TBUS that allows to view each subsystem
as a single TB, i.e., a single Unit Under Test (UUT). The
obtained structure is a tree of test busses.

The management of a TBUS, as well as the connection
between a higher and a lower level bus, are demanded to
the so-called Test Processor (TP). The TPs allow to
support a distributed approach in the execution of the
system test. The general idea is that the TP performs all
the operations on the lower bus needed to resolve the
commands coming from the upper bus. In order to provide
accessibility to each core from the highest hierarchical
levels, a TP can be programmed to physically connect the
upper bus with the lower one. In this way, the operations
on a single core can be performed not only from the bus
level to which the core belongs, but also from an upper
hierarchical level. This approach is particularly useful to
test full/partial scan cores, where, properly configuring the
TP, the designer can create a direct path from the highest
level to the core scan in/out pins and directly apply test
patterns.

2.2. Scheduling description
The flexibility in the test scheduling has been
implemented through a set of test instructions or
commands issued by the Test Processor to the targeted
Test Block. This mechanism can be used to activate the
execution of the test of a BIST-ready core, or to set a path
that an external ATE needs for applying scan-based test
patterns to a full-scan core. The test session of the SoC
can be therefore considered as a collection of test
programs, each of them implemented as a sequence of
commands. The order in which the test programs are
executed can be chosen by the user, and not necessarily at
design time. The available commands are:

1. Start: it starts the BIST procedures of a single block
(or of a group of blocks) in the system.

2. Configure: it is used to configure the TBs of the
cores connected to the TBUS. In particular, it is
possible to:

- configure the interconnections between the scan
chains in the cores and the Test Data Bus;

- configure the interconnections between each
block (core or BIST controller) and the Test
Bus;

- set the blocks in one of its possible functional
modes (test, transparent,…);

- configure, when available, the P1500 wrapper.

3. Collect: it collects the results of the BIST sessions.

4. Wait: in order to address possible power budget
constraints, it stops the scheduling until the BIST
procedure of one or more blocks is completed.

5. Jump: depending on the result of the BIST session
of one or more blocks, it jumps to a certain label in
the test program. This command adds flexibility in
the test scheduling, allowing the designer to take
decisions on the fly. It is particularly useful to avoid
testing additional parts of an already revealed faulty
component.

6. SetEnv/UnsetEnv: these two instructions are used to
set an environment in the hierarchy. In particular,
they can be sent in order to address, from the top-
level, blocks belonging to different hierarchical
levels. These two instructions are usually not parT
of a test program, but can be very useful when
applied directly from the outside for debugging and
diagnosis purposes.

3. RT-level implementation
After introducing the HD2BIST architecture at a logical
level, we now detail how the test structures actually appear
at the RT level. In particular, we will focus on the bus
interface of the cores (i.e., the TBs) and on the
implementation of the Test Bus (i.e., the TBUS).

3.1. The Test Blocks
The TB interfaces a core with the Test Bus. It must
therefore provide a standard way to access cores
implemented with different test strategies. The test blocks
belonging to a TBUS can be of four types:

• BISTed Core TB (Figure 2.a): the TB interfaces a core
that has an embedded BIST controller. It uses the Test
Data Bus only in an eventual diagnosis phase and the
TCB for receiving the start BIST and to communicate
the results;

• Scan TB (Figure 2.b): it interfaces a full or partial-scan
core;

• BIST Controller TB (Figure 2.c): it interfaces a BIST
controller whose UUT is posed on the same
hierarchical level (see next TB type);

• UUT TB (Figure 2.c): it interfaces the UUT related to a
certain BIST controller connected on the same test bus
(see previous TB type);

The configuration described in the last two points is useful
in order to reuse the same BIST controller for more than
one UUT, or to move the BIST controller away from its
UUT. The idea is to connect the BIST Controller TB and
the UUT TB through the TBUS and perform the test.

BISTed
CORE

BIST
Controller

TB
TDBTCB

Mission
Logic

Core

BIST
Cont.

Full-Scan
Core

DATA IN

(b)(a)

(c)

TDBTCB

TB

TDBTCB

TDBTCB

SCAN_IN
SCAN_EN

SCAN_OUT

DATA IN

TB
TDBTCB

TDBTCB

CONTROL
STATUS

DATA

DATA IN

TB
TDBTCB

TDBTCB

CONTROL

DATA

STATUS

DATA

STATUS
CONTROL

Figure 2 BISTed Core TB

Internally, the TBs can be considered as register files,
where the registers can be used to configure the blocks, to
set or reset a signal toward the core, to read a signal
coming from the core, and to read the status of the block.
There are three different classes of registers:

1. Test Control Registers (TCR): they are usually
written by a TP to perform an operation on the core
test logic. For example the TP can write a TCR to
start the BIST of a BIST-ready core;

2. Test Status Registers (TSR): They are usually
connected to a test status signal of the core and read
by the TP to monitor the status of the core test;

3. Test Mode Registers (TMR): they are usually written
by the TP to properly configure the block. Each
mode (or configuration) implemented in the TMR
corresponds to a different interconnection scheme
between the Test Data Bus and the core I/Os. It is
possible to define as many modes as necessary to
cover all the test requirements.

The number of registers usually depends on the number of
operations (TCR), modes (TMR) and statuses (TSR) that
the core needs to be tested.

3.2. The Test Bus
Each Test Bus connects the TBs belonging to the same
hierarchical level. The bus has been implemented as a ring
bus, and the hierarchy is realized connecting different
rings through ad-hoc TPs. No conceptual constraints are
posed to choose a different bus shape.

TP

TB

TB

TB

TLTP TAP
Controller

Core

Core

Core

Figure 3: Test Bus structure example

As previously mentioned, the Test Bus is split into Test
Control Bus and Test Data Bus.

3.2.1. The Test Control Bus
The Test Control Bus (TCB) connects a certain number of
TBs. The TCB sees each TB as a register file that can be
read or written. The communication protocol implemented
on the TCB is Token-based, i.e., all the information
exchanged are packed in a fixed length frame called
‘token’. Using a ring structure, each token is transmitted
on a point-to-point connection between two TBs (TP).
Each token received by a TB (TP) has to be, if necessary,
forwarded to the next block in order to reach its correct
destination. When a token comes back to the source, the
TB (TP) must remove it from the bus. In this way, each
block on the bus can read or write the registers of another
block belonging to the same bus. Normally, each ring in
the TCB is an isolated transmission domain. A token
cannot therefore be transmitted between two different
hierarchical levels. However, this operation might be
necessary, for example during the diagnosis phase. To
solve the problem the SetEnv and UnSetEnv instructions
are used. As the name suggests, the SetEnv instruction sets
an environment in the hierarchy. The blocks that do not
belong to that environment will not react to the next
tokens until they receive an UnSetEnv instruction. In
particular, the SetEnv instruction can be sent only to a TP.
All the blocks crossed by the SetEnv instruction fall in an
idle state and they do not react to the following tokens.
The destination TP, after receiving a SetEnv instruction,
starts to forward all the following tokens to the lower ring.
With this mechanism, the transmitted tokens are processed
only in the lower ring. Continuing to send SetEnv
instructions, we can reach any desired block in the
hierarchy. To restore the normal situation it is only
necessary to send a broadcast UnSetEnv. The instruction
flows along the path and all the blocks crossed by the
UnSetEnv instruction restarts to recognize and process the
tokens.

3.3. The Test Data Bus
The Test Data Bus is completely dedicated to dynamic
data. It is therefore used to carry:

• Test data patterns for a full-scan testing of any core
from the highest hierarchical level;

• Test data patterns from a BIST controller to a core;

• The scan chains content of core for diagnosis purposes.
Using the TCB, the Test Data Bus can be dynamically
configured in order to permit the accessibility to all the
blocks in the hierarchy, and to allow a flexible allocation
of the bus lines. The designer can choose to have different
types of configurations for each block. In general, he can
decide how to connect the lines of the data bus with the
I/Os of the core. Locally to a block, each line of the TDB
can be in two states:

1. Bypass: the received data are forwarded to the next
block;

2. Connect: the received data are forwarded to a core
input. On the same line of the TDB, an output of the
core is forwarded to the next block.

In other words, if the line is in Connect state, the ring line
is opened and an input and an output of the core are
connected to the bus. The idea is to use the incoming bus
lines part to force the core inputs and the outgoing part to
read the core outputs. The TDB can be shared:

• In width: some lines of the TDB are used for testing a
core, some others to simultaneously test another core;

• In time: different blocks use the same lines in different
moments. For example, it is possible to use some lines
to connect a BIST controller with an UUT and then,
after finishing the test of the UUT, the same lines to
connect the same BIST controller with another UUT;

The transmission domain over the TDB can be local to the
bus or expanded to more rings. In particular, in a
hierarchical architecture, the Test Processors have to
connect the upper TDB with the lower TDB. Properly
configuring all the Test Processors and the Test Blocks,
the designer can create a data path among the blocks in the
hierarchy.

3.3.1. Using the Test Data Bus for full-scan testing
One of the most useful applications of the TDB is the
support of full-scan cores testing (Figure 4.a). The idea is
to create a path to the core from the top level TAP
controller, from where the test patterns are applied. A
preliminary configuration phase is needed to set the path.
Data patterns can then flow from outside to the scan-in of
the core and from the core scan-out to outside. Usually the
number of lines allocated for this purpose is equal to the
number of the scan chains in the UUT plus an additional
line for the scan enable signal. If, due to the allocation
policy or the TDB width, this amount of lines is not
available, the designer can use a Scan Chain Router to

reduce the number of scan chains. The 'in width' sharing of
the bus allows the concurrent test of two or more full-scan
cores. The external ATE possibly applying the patterns
only has to consider the initial and final latency due to the
path configured along the hierarchy.

3.3.2. Using the Test Data Bus to connect a BIST
controller to a core
The TDB can be used to connect a BIST controller to its
UUTs (Figure 4.b). After the usual data bus configuration
phase, the patterns generated by the BIST controller can
flow on the TDB towards the UUT. As usual, dynamic
signals are transmitted on the TDB, whereas the static
ones are exchanged on the TCB. Due to the configuration
features of the data bus, a single BIST controller can be
used to test different UUT. Supposing to have two cores
of the same type on the same ring, instead of having two
separate and identical BIST controllers, it is possible to
put on the ring a single BIST controller and to connect it
first to one core and then to the other one. The idea is to
conceptually divide the BIST controller in the Test
Patterns Generator (TPG) part and in the Output Data
Evaluator (ODE) part. Supposing that the two parts have
two enable signals, the two corresponding TBs can pilot
the generation of the test patterns, the evaluation of the
results, and the UUT scan enable to synchronize the flow
of bits.

In addition, since the BIST controller was originally
designed to be in direct contact with the UUT, the
interface between the two blocks may have more signals
than the ones available on the TDB. In this case the TBs
are able to compact the signals, transmit them on the Test
Bus, and de-compress them before applying them to the
UUT. During the compression/decompression operations,
the BIST controller and the UUT scan-in are disabled
through the enable signals. The compression/
decompression mechanism obviously does not allow at-
speed testing and may introduce a considerable test time
overhead.

TB

TB

Full-scan Core

TP

TB TLTP TAP

Core

Core TB

TP
TB

TB

Core

BIST
controller

(a) (b)

Figure 4: Using of TDB to test different types of cores

3.3.3. Using the Test Data Bus for diagnosis of
BISTed blocks
At the end of test session, the BISTed cores often release
not only a boolean result of the test, but in case of failure

they allow to unload the scan chains content for diagnosis
purposes. In this case, the TDB can be used, similarly to
the full-scan cores, to extract the chain contents.

3.3.4. Using the Test Data Bus to test glue logic
The chip integrator often adds some user-defined logic
(glue logic) to connect the embedded cores. This logic is
usually not localized and can’t be wrapped or considered
as a core. This logic is usually tested using a full-scan
approach and, since it is not localized, the use of a TDB to
deliver test patterns seems to be ineffective. Nevertheless,
due to the hierarchical design approach, the glue logic can
be split in different parts each referring to a certain bus
domain. From each master TP, some scan chains go
through the glue logic referred to that bus. This scan
chains can be considered as pseudo TDB lines and
connected to the upper TDB. This mechanism allows
testing the glue logic almost as a standard scan-chain of a
full-scan core (Figure 5).

TB1

TP

Scan chain
of glue logic

Additional
scan chainTB2

TB3

TB4 TB5

Figure 5: Pseudo TDB lines for testing the glue logic

3.4. Test Access Port Interface
Interfacing the H2DBIST with a Boundary Scan TAP
interface is necessary to control the TLTP using a standard
interface and to simplify the use of an external ATE to test
full or partial scan cores. The idea is to control the Test
Bus of the top-level ring from the TAP controller. Directly
controlling the Test Bus, we conceptually substitute the
TLTP with the external ATE. The TLTP contains a
Command Register connected to Test Data In (TDI) and
Test Data Out (TDO) pins of the TAP, which can be used
to set it in one of the following functional modes:

1. Scheduling Mode: this instruction starts the
execution of one of the test programs implemented
in the TLTP. In this mode, the Test Bus is not
accessible from outside. At the end of the test, the
results are loaded into the Command Register and
can be scanned out from the TDO pin.

2. Full Mode: the TCB is controlled using the TDI and
TDO pins. The instruction register is directly used
to load and unload the tokens to be sent or received

on the TCB. The TDB is controlled using the scan-
in and scan-out lines.

3. Data Mode: only the TDB is accessible from the
outside using the TDI and TDO pin. The TCB
cannot be accessed. Before using this mode, all the
TBs must be configured using the Full Mode.

4. Experimental results
We implemented and synthesized the HD2BIST
architecture (using Synopsys™ and the G11 LSI Logic™
library) on a complex test case with two hierarchical
levels. The test case has been chosen to demonstrate the
effectiveness of the proposed approach in terms of
reusability of the test structures in a hierarchical
architecture, test patterns delivering for full-scan cores,
and scheduling of the BIST-ready blocks. The following
section analyze the example in details, providing
experimental results in terms of area overhead.

4.1. DacTOPplus Architecture
The goal of the presented test case, named DacTOPplus,
is to prove the flexibility of the HD2BIST architecture in a
design embedding full-scan modules and BIST-ready
blocks. DacTOPplus is composed of four identical macro-
cores (DacTOP) and two BISTed RAMs (8192x8) (Figure
6).

• Each DacTOP macro is composed of four sub-
modules:

• One transmission macro-cell NDS_TX;

• One receiving macro-cell NDS_RX.

• Two identical NDS macro-cells;

The NDS_RX, NDS_TX macro-cells are full-scan
modules with seven scan chains each, whereas the two
NDS modules have been considered as glue-logic, and all
their flip-flops are connected through a single scan chain.
Table 1 reports the area occupied by the test case.

CORE Equivalent Gates
NDS 99,801

NDS_RX 102,688
NDS_TX 102,802
DacTOP 430,356

BISTed RAM 163,694
DacTOPplus 2,048,814

Table 1: DacTOPplus dimensions in Synopsys equivalent
gates

DacTOP
NDS_RX

NDS

NDS_TX

NDS
BISTed
RAM

BISTed
RAM

DacTOP
NDS_RX

NDS

NDS_TX

NDS

DacTOP
NDS_RX

NDS

NDS_TX

NDS

DacTOP
NDS_RX

NDS

NDS_TX

NDS

Figure 6: DacTOPplus scheme

In the following, we will focus first on the test structure
implemented in the DacTOP macros, and then on the
complete test case including the four DacTOP macros as
well as the two BISTed memory modules.

4.2. DacTOPTest Structure
The test structure implemented in each DacTOP macro is
composed of a single HD2BIST chain controlled by a Test
Processor (TP). The NDS_TX and the NDS_RX macros,
packaged by a P1500-like wrapper, are controlled by two
Test Blocks (TB), whereas the NDS modules are treated
as glue logic, and therefore directly controlled (or tested)
by the TP. The HD2BIST structure inserted in each
DacTOP macro is therefore composed of (Figure 7):

• One Test Bus split into:

- One Test Control Bus 1-bit wide.

- One Test Data Bus. Since each module has seven
scan chains and the Test Data Bus has to transmit
the Scan Enable and the Reset signals driven by the
ATPG patterns, we decided to drive all the scan-
chain in parallel and we therefore sized the Test
Data Bus width to 10.

• Two Test Blocks (TBs). Each Test Block has:

- One Test Mode Register which can be set in two
functional modes:

- Bypass mode, where the Test Data Bus is in
bypass mode;

- Connect mode, where the Test Data Bus is
connected to the scan chains and the scan
patterns can be delivered to the module.

- One Test Control Register used to send commands
to the wrappers. In particular, it is connected to the
signals of the wrapper used to put the core in
Normal or Test mode, in internal or external test,
and to allow the shifting of the test results.

• One Test Processor (TP) with three test programs
PROG[1-3], used to connect the NDS_RX, NDS_TX,
and the two NDS macros respectively, to the Test Data
Bus. Each program sets a different target block in

Connect mode and the others in Bypass mode. The
Test Processor has:

- One Test Mode Register with three functional
modes:

- Bypass mode where the upper Test Data Bus
controlled by the TP is in bypass mode (see
Section 3.3);

- ExtCon mode, where the lower Test Data
Bus is connected to the TLTP input signals;

- Glue mode, where the TP creates a direct
path from the outside to the scan-chain
connecting the glue logic;

- One Test Control Register used to start the three
different test programs PROG[1-3].

- One Test Status Register set to “1” when the
commands written on the Test Commands Register
is completed and the scan patterns can be delivered
to the target block. The register is set to “0” when
the program is running.

TPTP

NDS_RXNDS_RX NDS_TXNDS_TX
TBTB TBTB

NDSNDS NDSNDS

Test Bus

Figure 7 : DacTOP HD2BIST scheeme

Table 2 and Table 3 report the area obtained synthesizing
the DacTOP test case and the HD2BIST architecture using
the G11 LSI Logic library.

CORE Equivalent Gates
Glue Logic 199,602

Wrapped NDS_RX 112,049
Wrapped NDS_TX 110,976

DacTOP with wrappers 447,891
Table 2: DacTOP area with wrapped modules

CORE Equivalent Gates
TB of NDS_RX 3,695
TB of NDS_TX 3,701

TP 6,145
HD2BISTed DacTOP 461,434

Table 3: HD2BISTed DacTOP area occupation

The area overhead of the HD2BIST structure w.r.t. the
original DacTOP area is the 7.03%, whereas the overhead

w.r.t. the DacTOP area including the wrappers is 2.97%.
We included the wrapped version of the DacTOP Plus
since we consider the wrappers a test requirement
independent from the HD2BIST structure.

4.3. DacTOPplus Test Structure
The test structure inserted in the DacTOPplus test case is
composed of one HD2BIST chain at the top level, and one
HD2BIST chain for each DacTOP module. No
modifications are necessary to use the test architecture
implemented in each DacTOP macro in order to reuse it at
the top-level. The top level chain is built of the following
blocks (Figure 8):

• One Test Bus split into:

- One Test Control Bus one line wide.

- One Test Data Bus ten lines wide (each DacTOP
module needs ten lines, whereas the BISTed RAMs
do not need any data line).

• One Test Block for each RAM including:

- One Test Control Register used to send the
START_BIST command to the RAM BIST
controllers;

- One Test Status Register, two bit wide, used to read
the BIST_END and the BIST_OK signals from the
RAM BIST controllers.

• Four Test Processors, one for each DacTOP macro, as
described in the previous section.

• One Top Level Test Processor with a TAP interface. In
the Test Processor we implemented thirteen different
test programs, which can be executed in any desired
order:

- PROG[1]: it starts the BIST of the two RAMs,
waits for the BIST to end, and reads the test
results;

- PROG[2-4]: they start respectively PROG[1-3]
of the first DacTOP and they wait for their end.
They then connect the Scan In of the TAP
interface with the first DacTOP in order to scan
out the test results;

- PROG[5-7]: the same as PROG[2-4] but with
the second DacTOP module;

- PROG[8-10]: the same as PROG[2-4] but with
the third DacTOP module;

- PROG[11-13]: the same as PROG[2-4] but with
the fourth DacTOP module;

The Test Processor has:

- One Control Register used to start the thirteen
programs. It is loaded through the TDI of the
TAP interface with the number corresponding to
the specific program to be executed. The end of
the program is notified by TPRE signal of the
TAP interface;

- One Test Status Register which contains, at the
end of PROG1, the BIST_OK flag of the first
RAM and the BIST_OK flag of the second one.
At the end of PROG1 the Test Status Register
can be read trough the TDO of the TAP
interface.

BISTed
RAM

TB6TB6

BISTed
RAM

TB5TB5

TLTP
TLTP

TAP
TA
P

NDS_RXNDS_RX NDS_TXNDS_TX
TBTB TBTB

NDSNDS NDSNDS

TP4TP4

NDS_RXNDS_RX NDS_TXNDS_TX
TBTB TBTB

NDSNDS NDSNDS

NDS_RX NDS_RX NDS_TX NDS_TX
TBTB TBTB

NDS NDS NDS NDS

NDS_RX NDS_RX NDS_TX NDS_TX
TBTB TBTB

NDS NDS NDS NDS

TP1 TP1TP2 TP2

TP3TP3

Figure 8: DacTOPplus with HD2BIST

Table 4 reports the area obtained synthesizing the
DacTOPplus using the G11 LSI Logic library.

CORE Equivalent Gates
HD2BISTed DacTOP 461,434

TB of RAM 2,956
TP_TAP 5,958

HD2BISTed DacTOPplus 2,184,997
Table 4 : Area result of DacTOPplus

The area overhead of the HD2BIST structure w.r.t. the
original DacTOPplus area is 6.61%, whereas the overhead
w.r.t. the DacTOPplus area including the wrappers is
3.06%.

4.4. Running a test program
To show how it is possible to actually exploit the
HD2BIST architecture to run the system test, we detail two
different test programs that target the BISTed RAMs and
DacTOP NDS_RX module. Each program can be
launched loading the corresponding code in the Instruction
register of the TAP interface.

Table 5 presents PROG[1], which activates the test of the
two BISTed RAMs. The program activates the BIST
procedures of the two BISTed RAMs by writing a proper
value in the Test Control Registers of their Test Blocks.
After activating the test procedures, the TLTP starts
polling the two Test Blocks waiting for the end of the

BIST procedure. Test programs allows a very flexible
implementation of any test scheduling: PROG[1] executes
the BIST of the two memories in parallel, but, by simply
exchanging instruction #2 and #3, it is possible to execute
a serial test of the two memories.

Test primitive
1. Start TB5, RAMBIST

/* The TLTP sends a WRITE token to TB5 setting
its Test Control Register to ‘1’. This action
activates the BIST controller of the first
BISTed RAM and the BIST procedure begins*/

2. Start TB6, RAMBIST

/* The same action is performed on TB6 in order
to start the BIST procedure of the second
BISTed RAM */

3. Wait TB5, RAMBIST

/* The TLTP starts polling TB5 reading its Test
Status Register waiting for the end of the BIST
procedure. When the test ends, the test program
execution jumps to the next instruction */

4. Wait TB6,RAMBIST

/* As for the previous RAM, the TLTP starts
polling TB6 waiting for the end of the BIST
procedure of the second RAM. When the test
ends, the test program execution jumps to the
next instruction */

5. END

/* The TLTP sets one of its output signals
(TPRE) to ‘1’ in order to inform that the test
program is finished and the test results can be
scanned out from the TDO pin of the TAP
interface */

Table 5 : Test program PROG[1] of the TLTP

The second example program is PROG[2] (Table 6),
which creates a path on the Test Data Bus that directly
connects the top-level TLTP to the NDS_RX module of
the first DacTOP. After properly configuring the top-level
chain, the Test Data Bus of the first DacTOP module is
connected to the top-level Test Data Bus in order to allow
the TLTP in order to start the execution of PROG[1] in
the first DacTOP (Table 7). PROG[1] creates a path from
the scan chains of NDS_RX to the Test Data Bus lines. As
soon as PROG[1] is completed, the TLTP can assert the
TPRE output signals to ‘1’ in order to inform that the
configuration phase is finished, a path has been set from
the top-level to the addressed block in the hierarchy, and
the test patterns can be applied to the TDI signal of the
TAP interface.

Test primitive
1. CONF All, BypassMode

/* First of all, all the TP and TB of the top-
level chain are set in Bypass mode using a
broadcast Conf token */

2. CONF TP1, ConnectMode

/* The TP of the first DacTOP macro is set in
Connect mode, in order to connect its Test
Data Bus to the top level Test Data Bus */

3. Start TP1, PROG[1]

/* The TLTP writes the Test Control Register
of TP1 in order to start the execution of
PROG[1] of the DacTOP macro (See Table 7) */

4. Wait TP1, PROG[1]

/* At this point, the TLTP waits for the
program to end by polling the Test Status
Register of TP1 */

5. END

/* The TLTP sets the TPRE output signals to
‘1’ in order to inform that the configuration
phase is finished, a path has been set from
the top-level to the addressed block in the
hierarchy, and the test patterns can be
applied to the TDI signal of the TAP interface
*/

Table 6 : Test program PROG[2] of the TLTP

Test primitive
1. CONF All, BypassMode

/* All the TBs belonging to the first DacTOP
macro are configured in Bypass mode */

2. CONF TB1_1, ConnectMode

/* The first TB of the chain is set in Connect
mode, in order to connect the scan chains of
NDS_RX to the Test Data Bus lines */

3. START All, Isolated

/* The wrappers of the NDS_TX and NDS_RX
macros are set in Isolated mode. This action
is necessary to avoid the outputs of the
module under test (NDS_RX) to apply forbidden
patterns to the boundaries of the other
modules */

4. START TB1_1, InternalTest

/* The wrapper of the module under test is set
in Internal mode */

5. END

/* TP1 sets its Test Status Register to ‘1’ in
order to notify the termination of PROG[1] */

Table 7 : Test program PROG[1] of the DacTOP macro

In a similar way it is possible to create the test program to
test glue logic and the NDS_TX module.

5. Conclusions
This paper proposed HD2BIST, a complete hierarchical
framework to support the definition of the scheduling
strategies and data patterns delivering mechanisms of the
embedded cores of a complex system. The main goal of
the HD2BIST architecture is to maximize and simplify the
reuse of the built-in test architectures giving the chip
designer the highest flexibility in planning the overall SoC
test strategy. HD2BIST defines a TAM able to provide a
direct “virtual” access to each core of the system, and can
be conceptually considered on a higher level w.r.t. the
P1500 standard, whose main target is to make the test
interface of each core independent from the vendor. We
presented a complex case study where we demonstrated
the effectiveness of the approach in terms of complexity
and area overhead.

6. References

[1] Varma, P. Bhaita : A Structured Test Re-Use
Methodology for Core-Based System Chips.
Proceedings IEEE International Test Conference,
pp. 294-302. IEEE Computer Society Press, 1998.

[2] F. Beenker, R. Dekker, R. Stans, Implementing
MACRO Test in Silicon Compiler Design, IEEE
Design & Test of Computers, April 1990, pp. 41-51

[3] O.F. Haberl, T. Kropf, HIST, A Methodology for
the Automatic Insertion of a Hierarchical Self test,
Proc. IEEE International Test Conference (ITC’92),
1992, pp. 732-741

[4] L. Whetsel, An IEEE 1149.1 Based Test Access
Architecture For ICs With Embedded Cores, Proc.
IEEE International Test Conference (ITC’97),
November 1997, Washington (D.C.), pp. 69-78

[5] Y. Zorian, A distributed BIST Control Scheme for
complex VLSI devices, Proc. 11th IEEE VLSI Test
Symposium (VTS’93), April 1993, pp. 4-9

[6] A. Benso, S. Cataldo, S. Chiusano, P. Prinetto, Y.
Zorian, HD-BIST: a Hierarchical Framework for
BIST Scheduling and Diagnosis in SoCs, Proc.
IEEE International Test Conference (ITC’99),
Atlantic City (NJ), September 1999, pp. 993-1000

[7] Adham : P1500-CTL: Towards a Standard Core
Test Language. Proceedings IEEE VLSI Test
Symposium, IEEE Computer Society Press., Apr.
1999

[8] Zorian Y.: Preliminary Outline of IEEE P1500
Scalable Architecture for Testing Embedded Cores.
Proceedings IEEE VLSI Test Symposium, IEEE
Computer Society Press, Apr. 1999

