1,847 research outputs found

    Desogestrel down-regulates PHOX2B and its target genes in progesterone responsive neuroblastoma cells

    Get PDF
    The paired-like homeobox 2B gene (PHOX2B) encodes a key transcription factor that plays a role in the development of the autonomic nervous system and the neural structures involved in controlling breathing. In humans, PHOX2B over-expression plays a role in the pathogenesis of tumours arising from the sympathetic nervous system such as neuroblastomas, and heterozygous PHOX2B mutations cause Congenital Central Hypoventilation Syndrome (CCHS), a life-threatening neurocristopathy characterised by the defective autonomic control of breathing and involving altered CO2/H+ chemosensitivity. The recovery of CO2/H+ chemosensitivity and increased ventilation have been observed in two CCHS patients using the potent contraceptive progestin desogestrel. Given the central role of PHOX2B in the pathogenesis of CCHS, and the progesterone-mediated effects observed in the disease, we generated progesterone-responsive neuroblastoma cells, and evaluated the effects of 3-Ketodesogestrel (3-KDG), the biologically active metabolite of desogestrel, on the expression of PHOX2B and its target genes. Our findings demonstrate that, through progesterone nuclear receptor PR-B, 3-KDG down-regulates PHOX2B gene expression, by a post-transcriptional mechanism, and its target genes and open up the possibility that this mechanism may contribute to the positive effects observed in some CCHS patients

    Early impairment of endothelial structure and function in young normal-weight women with polycystic ovary syndrome

    Get PDF
    The aim of this study was to evaluate the presence of early vascular damage in young normal-weight women with polycystic ovary syndrome (PCOS).Thirty young normal-weight women with PCOS, who had no additional metabolic or cardiovascular diseases, and 30 healthy women (controls) matched for age and body mass index were studied. A complete hormonal assay was performed in each subject. Serum insulin and glucose levels were measured at baseline and after the oral glucose tolerance test. Plasma endothelin-1 levels and serum lipid profile were also assessed. The endothelial function was studied by flow-mediated dilation on the brachial artery, and arterial structure was evaluated by intima-media thickness measurement using Doppler ultrasound of both common carotid arteries.A significant (P < 0.05) difference in flow-mediated dilation (14.3 +/- 1.9% vs. 18.1 +/- 2.0% for PCOS patients and controls, respectively) and in intima-media thickness (0.53 +/- 0.09 mm vs. 0.39 +/- 0.08 mm for PCOS patients and controls, respectively) was found between PCOS and control subjects. Serum endothelin-1 levels were also significantly (P < 0.05) higher in PCOS patients compared with controls (1.1 +/- 0.4 pmol/liter vs. 0.5 +/- 0.2 pmol/liter for PCOS patients and controls, respectively).In conclusion, our data show that young, normal-weight, nondyslipidemic, nonhypertensive women with PCOS have an early impairment of endothelial structure and function

    GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration

    Get PDF
    Many species of ganglioside GM1, differing for the sialic acid and ceramide content, have been characterized and their physico\u2010chemical properties have been studied in detail since 1963. Scientists were immediately attracted to the GM1 molecule and have carried on an ever\u2010increasing number of studies to understand its binding properties and its neurotrophic and neuroprotective role. GM1 displays a well balanced amphiphilic behavior that allows to establish strong both hydrophobic and hydrophilic interactions. The peculiar structure of GM1 reduces the fluidity of the plasma membrane which implies a retention and enrichment of the ganglioside in specific membrane domains called lipid rafts. The dynamism of the GM1 oligosaccharide head allows it to assume different conformations and, in this way, to interact through hydrogen or ionic bonds with a wide range of membrane receptors as well as with extracellular ligands. After more than 60 years of studies, it is a milestone that GM1 is one of the main actors in determining the neuronal functions that allows humans to have an intellectual life. The progressive reduction of its biosynthesis along the lifespan is being considered as one of the causes underlying neuronal loss in aged people and severe neuronal decline in neurodegenerative diseases. In this review, we report on the main knowledge on ganglioside GM1, with an emphasis on the recent discoveries about its bioactive component

    Characterization of the GM1 oligosaccharide transport across the blood-brain-barrier

    Get PDF
    Ganglioside GM1 has demonstrated to attenuate Parkinson Disease (PD) symptoms in clinical and preclinical trials. Nevertheless, the GM1 efficacy revealed in vitro is critically reduced in vivo, because of the amphiphilic behavior that limits the passage across the blood brain barrier (BBB). In vitro and in vivo experiments showed that GM1 exerts neurotrophic functions by interacting with plasma membrane (PM) proteins throughout its oligosaccharide portion (OligoGM1). Furthermore, OligoGM1 intravenously or subcutaneously injected into mice is absorbed and taken up by different organs and tissues, including brain. In order to take advantage of GM1 oligosaccharide properties and to overcome GM1 pharmacological limitation, this study has been aimed by the investigation of the OligoGM1 transportthrough the BBB, by using a human in vitro model for human brain-like endothelial cells (hBLEC). Ruled out the toxicity of OligoGM1 on hBLEC, the OligoGM1 transport across the hBBB has been analyzed, finding out a 20 fold higher rate than GM1 and a time and concentration dependence. In order to characterize the OligoGM1 passage, a direct evaluation of the OligoGM1 interaction with the ABC-transporters was carried on, leaving out this way for OligoGM1 transport. Moreover, inverse- and 4\ub0C-transport experiments were performed excluding the implication of the active transport for OligoGM1 passage across the hBLEC, leading to consider the passive-paracellular route. Furthermore, after the hBLEC transport, OligoGM1 maintained its stability and capacity to induce neuritogenesis in the mouse neuroblastoma cells line Neuro2a. This preliminary study has improved the knowledge about the GM1 pharmacological potential by proving that OligoGM1 can cross advantageously the BBB, offering a new promising therapeutic strategy

    Which route of antibiotic administration should be used for third molar surgery? A split-mouth study to compare intramuscular and oral intake

    Get PDF
    Objectives. To compare the effectiveness of two different routes of antibiotic administration in preventing septic complications in patients undergoing third molar extraction. Materials and Methods. Twenty-four healthy patients requiring bilateral surgical removal of impacted mandibular third molars were successfully enrolled for this study. Depth of impaction, angulation, and relationship of the lower third molars with the mandibular branch had to be overlapping on both sides. A split-mouth design was chosen, so each patient underwent both the first and second surgeries, having for each extraction a different antibiotic route of administration. The second extraction was carried out 1 month later. To compare the effects of the two routes of antibiotic administration, inflammatory parameters, such as edema, trismus, pain, fever, dysphagia and lymphadenopathy were evaluated 2 and 7 days after surgery. Side effects of each therapy were evaluated 48h after surgery. Results. oral and intramuscular antibiotic therapies overlap in preventing post-operative complications in dental surgery (p>0.05), even if the oral intake, seems to promote the onset of significant gastrointestinal disorders (p=0.003). Conclusions. This study could help dentists in their ordinary practice to choose the right route of antibiotic administration in the third molar surgery. At the same effectiveness, the higher cost and the minor compliance of the patient seem not to justify a routine antibiotic intramuscular therapy, reserving it for patients with gastrointestinal disorders

    Human Cancer Cells Signal Their Competitive Fitness Through MYC Activity

    Get PDF
    MYC-mediated cell competition is a cell-cell interaction mechanism known to play an evolutionary role during development from Drosophila to mammals. Cells expressing low levels of MYC, called losers, are committed to die by nearby cells with high MYC activity, called winners, that overproliferate to compensate for cell loss, so that the fittest cells be selected for organ formation. Given MYC's consolidated role in oncogenesis, cell competition is supposed to be relevant to cancer, but its significance in human malignant contexts is largely uncharacterised. Here we show stereotypical patterns of MYC-mediated cell competition in human cancers: MYC-upregulating cells and apoptotic cells were indeed repeatedly found at the tumour-stroma interface and within the tumour parenchyma. Cell death amount in the stromal compartment and MYC protein level in the tumour were highly correlated regardless of tumour type and stage. Moreover, we show that MYC modulation in heterotypic co-cultures of human cancer cells is sufficient as to subvert their competitive state, regardless of genetic heterogeneity. Altogether, our findings suggest that the innate role of MYC-mediated cell competition in development is conserved in human cancer, with malignant cells using MYC activity to colonise the organ at the expense of less performant neighbours

    Editorial Note

    Get PDF

    Crystal Structures of Human Pyridoxal Kinase in Complex with the Neurotoxins, Ginkgotoxin and Theophylline: Insights into Pyridoxal Kinase Inhibition

    Get PDF
    Several drugs and natural compounds are known to be highly neurotoxic, triggering epileptic convulsions or seizures, and causing headaches, agitations, as well as other neuronal symptoms. The neurotoxic effects of some of these compounds, including theophylline and ginkgotoxin, have been traced to their inhibitory activity against human pyridoxal kinase (hPL kinase), resulting in deficiency of the active cofactor form of vitamin B6, pyridoxal 5′-phosphate (PLP). Pyridoxal (PL), an inactive form of vitamin B6 is converted to PLP by PL kinase. PLP is the B6 vitamer required as a cofactor for over 160 enzymatic activities essential in primary and secondary metabolism. We have performed structural and kinetic studies on hPL kinase with several potential inhibitors, including ginkgotoxin and theophylline. The structural studies show ginkgotoxin and theophylline bound at the substrate site, and are involved in similar protein interactions as the natural substrate, PL. Interestingly, the phosphorylated product of ginkgotoxin is also observed bound at the active site. This work provides insights into the molecular basis of hPL kinase inhibition and may provide a working hypothesis to quickly screen or identify neurotoxic drugs as potential hPL kinase inhibitors. Such adverse effects may be prevented by administration of an appropriate form of vitamin B6, or provide clues of how to modify these drugs to help reduce their hPL kinase inhibitory effects

    PW06-05 The predictive role of anxiety disorders on depressive phenomenology during post-partum period

    Get PDF
    Aims:To investigate the predictive role of any specific (DSM-IV) Anxiety Disorders (AD) on depressive symptoms and Major or Minor Depressive Disorder (MDD, mDD) during early postpartum period.Method:Women (at the 12th-15th gestational week, N=1066) were recruited in the framework of the Program 'Perinatal Depression - Research & Screening Unit (PND-ReScU)". Depressive symptoms were assessed by the Edinburgh Postnatal Depression Scale (EPDS), and Axis-I disorders (AD, MDD, mDD) were diagnosed with the Structured Clinical Interview for Axis-I Disorders (SCID-I).Results:Any current AD at baseline (3rd month of pregnancy) was detected in 231 (21.7%). Having at least one current AD, was associated with a greater likelihood of having MDD or mDD during the early postpartum period, even after the adjustment for the confounding factor of having a lifetime history of MDD (RR=3.86 95%CI 1.58-9.42).In particular, women affected by Obsessive Compulsive Disorder (N=17; 1.6%) or Panic Disorder (N=43; 4%) had at higher risk to develop depressive symptoms (EPDS≥13) during the postpartum period than women without these AD (RR=6.9 and 6.7 respectively). As for the risk of developing PPD, the strongest association was found for women with Panic Disorder (RR=7.6 95% CI 2.62-22.0).Conclusions:AD are associated with a greater likelihood to develop depressive symptoms and MDD or mDD during the early postpartum period. Women with current PD have the strongest risk to develop both MDD or mDD and depressive symptoms during early postpartum period compared to other anxiety disorders
    • …
    corecore