3,836 research outputs found

    Leptogenesis within a generalized quark-lepton symmetry

    Full text link
    Quark-lepton symmetry has been shown to be inconsistent with baryogenesis via leptogenesis in natural schemes of the see-saw mechanism. Within the phenomenological approach of textures, we relax this strict symmetry and propose weaker conditions, namely models of the neutrino Dirac mass matrix MDM_D which have the same hierarchy as the matrix elements of MuM_u. We call this guide-line generalized hierarchicalhierarchical quark-lepton symmetry. We consider in detail particular cases in which the moduli of the matrix elements of MDM_D are equal to those of MuM_u. Within the phenomenological approach of textures, we try for the heavy Majorana mass matrix diagonal and off-diagonal forms. We find that an ansatz for MDM_D preserving the hierarchy, together with an off-diagonal model for the heavy Majorana neutrino mass, is consistent with neutrino masses, neutrino mixing and baryogenesis via leptogenesis for an intermediate mass scale mR1012m_R \sim 10^{12} GeV. The preservation of the hierarchical structure could come from a possible symmetry scheme.Comment: 12 pages, RevTex4. Title and abstract changed. Revised and enlarged versio

    Quantifying the Overall Efficiency of Circularly Polarized Emitters

    Get PDF
    An increasing number of circularly polarized luminescence (CPL) molecular emitters has been developed in recent years and many of them are intended for applications in which high overall CPL efficiencies are required. In order to have a complete picture of the efficiency of a CPL emitter, dissymmetry factor (glum) is not enough. In the following we propose a new quantity, named CPL brightness (BCPL), which takes into account absorption extinction coefficient and quantum yield along with the glum factor. We calculated BCPL value for more than 180 compounds reported in the literature and we analyse data distribution for the main classes of CPL molecular emitters. This tool can be employed to put into context new CPL active compounds and to direct the choice of molecular systems for specific CPL applications

    Chiroptical Properties in Thin Films of π-Conjugated Systems

    Get PDF
    Chiral π-conjugated molecules provide new materials with outstanding features for current and perspective applications, especially in the field of optoelectronic devices. In thin films, processes such as charge conduction, light absorption, and emission are governed not only by the structure of the individual molecules but also by their supramolecular structures and intermolecular interactions to a large extent. Electronic circular dichroism, ECD, and its emission counterpart, circularly polarized luminescence, CPL, provide tools for studying aggregated states and the key properties to be sought for designing innovative devices. In this review, we shall present a comprehensive coverage of chiroptical properties measured on thin films of organic π-conjugated molecules. In the first part, we shall discuss some general concepts of ECD, CPL, and other chiroptical spectroscopies, with a focus on their applications to thin film samples. In the following, we will overview the existing literature on chiral π-conjugated systems whose thin films have been characterized by ECD and/or CPL, as well other chiroptical spectroscopies. Special emphasis will be put on systems with large dissymmetry factors (gabs and glum) and on the application of ECD and CPL to derive structural information on aggregated states

    Circularly polarized light at the mirror: Caveats and opportunities

    Get PDF
    Moving from the simple concept that reflection onto a mirror surface changes the handedness of circularly polarized light, we describe what happens to the emergent polarization in two different cases after reflection on a back mirror. In the first case, a regular emitter is taken into account, where reflection has the effect to destroy the emergent polarization. In the second case, we show what could happen when a hypothetical apparently non-reciprocal emitting material undergoes a similar experiment. These simple concepts have important implications in the design of efficient circularly polarized emitting devices

    Impact and amplification of chirality in the aggregation of leucine-appended poly(p-phenylene ethynylene) (PPE)

    Get PDF
    A leucine-appended poly(p-phenyleneethynylene) (PPE) was prepared in enantiomeric stereoregular (L-1 and D-1) and stereorandom (rac-1) forms. The solution aggregates of L-1, D-1, rac-1, and mixtures of L-1/D-1, were characterized by absorption, electronic circular dichroism and emission spectra. Both rac-1 and L-1/D-1 mixtures are more prone to aggregate than L-1 and D-1. Upon aggregating, the enantiomeric mixtures manifest an apparent majority-rules effect, which is mostly due to the greater tendency to form heterochiral aggregates with respect to homochiral ones. The impact of chirality on the aggregation behaviour of the aminoacid-appended PPE is demonstrated

    Active-sterile neutrino oscillations in the early Universe: asymmetry generation at low |delta m^2| and the Landau-Zener approximation

    Get PDF
    It is well established that active-sterile neutrino oscillations generate large neutrino asymmetries for very small mixing angles (sin22θ0104\sin^2 2\theta_0\lesssim 10^{-4}), negative values of δm2\delta m^2 and provided that δm2104eV2|\delta m^2|\gtrsim 10^{-4} {\rm eV^2}. By numerically solving the quantum kinetic equations, we show that the generation still occurs at much lower values of δm2|\delta m^2|. We also describe the borders of the generation at small mixing angles and show how our numerical results can be analytically understood within the framework of the Landau-Zener approximation thereby extending previous work based on the adiabatic limit. This approximate approach leads to a fair description of the MSW dominated regime of the neutrino asymmetry evolution and is also able to correctly reproduce its final value. We also briefly discuss the impact that neutrino asymmetry generation could have on big bang nucleosynthesis, CMBR and relic neutrinos.Comment: 29 pages, 8 figures; to appear on Phys. ReV. D; figure 7 added, new curves in figure 5a, new figure

    Spatially Resolved Chiroptical Spectroscopies Emphasizing Recent Applications to Thin Films of Chiral Organic Dyes

    Get PDF
    Instrumental techniques able to identify and structurally characterize the aggregation states in thin films of chiral organic π-conjugated materials, from the first-order supramolecular arrangement up to the microscopic and meso-scopic scale, are very helpful for clarifying structure-property relationships. Chiroptical imaging is currently gaining a central role, for its ability of mapping local supramolecular structures in thin films. The present review gives an overview of electronic circular dichroism imaging (ECDi), circularly polarized luminescence imaging (CPLi), and vibrational circular dichroism imaging (VCDi), with a focus on their applications on thin films of chiral organic dyes as case studies

    Radiative Inflation and Dark Energy

    Full text link
    We propose a model based on radiative symmetry breaking that combines inflation with Dark Energy and is consistent with the WMAP 7-year regions. The radiative inflationary potential leads to the prediction of a spectral index 0.955 \lesssim n_S \lesssim 0.967 and a tensor to scalar ratio 0.142 \lesssim r \lesssim 0.186, both consistent with current data but testable by the Planck experiment. The radiative symmetry breaking close to the Planck scale gives rise to a pseudo Nambu-Goldstone boson with a gravitationally suppressed mass which can naturally play the role of a quintessence field responsible for Dark Energy. Finally, we present a possible extra dimensional scenario in which our model could be realised.Comment: 15 pages, 4 figures; v2: references added, appendix added, Section 5 slightly modified; content matches published versio
    corecore