13 research outputs found

    Effects of fat and/or methionine hydroxy analog added to a molasses-urea-based supplement on ruminal and postruminal digestion and duodenal flow of nutrients in beef steers consuming low-quality lovegrass hay

    Get PDF
    Five crossbred beef steers (initial BW = 338.6 ± 7.8 kg) fitted with ruminal and duodenal cannulas were used in a 5 × 5 Latin square design experiment to evaluate the effects of methionine hydroxy analog (MHA) and/or yellow grease (fat) added to a molassesurea- based supplement on intake and characteristics of digestion. Steers were fed low-quality hay (long-stem lovegrass Eragrostis curvula: 3.3% CP, 76.8% NDF; DM basis) ad libitum and supplemented with 0.91 kg/d (as fed) of 1 of 4 supplements in a 2 × 2 + 1 factorial arrangement of treatments. Supplemental treatments were 1) control (no supplement, NC); 2) molassesurea liquid supplement (U); 3) U containing (as-fed basis) 1.65% MHA (UM); 4) U containing (as-fed basis) 12% fat (UF); and 5) U containing (as-fed basis) 1.65% MHA and 12% fat (UMF). Total and forage OM intake (kg/d and as % of BW) increased (P \u3c 0.01) with molasses-urea, decreased (P ≤ 0.04) with MHA, and were not affected (P = 0.61) with fat supplementation. Total tract NDF digestibility increased (P = 0.01) with molasses-urea supplementation, and was less (P = 0.01) for fat than for nonfat supplementation. Total and microbial N flowing to the duodenum increased (P = 0.01) with molasses-urea supplementation. Although, total N flowing to duodenum was not affected (P = 0.27), microbial N decreased (P = 0.01), and nonammonia nonmicrobial N (NANMN) increased (P = 0.01) with fat supplementation. Extent of in situ OM and NDF digestibility at 96 h increased (P = 0.01) with molasses-urea supplementation, but were not affected (P ≥ 0.14) by either MHA or fat supplementation. Duodenal flow of total AA, essential AA, and nonessential AA increased (P ≤ 0.02) with molasses-urea supplementation. Total and nonessential serum AA concentration decreased (P \u3c 0.01) with molasses-urea supplementation. Total ruminal VFA concentration increased (P = 0.01) with molasses-urea supplementation, and was not affected (P ≥ 0.14) by MHA or fat supplementation. Fat can be used in molasses-urea liquid supplements for cattle consuming low-quality forage to increase energy intake without negatively affecting forage intake or characteristics of digestion. However, adding MHA did not further improve the response to urea supplementation of cattle consuming low-quality forage. Conversely, the inclusion of MHA on urea supplement decreased forage intake

    Ecotype Differentiation in the Face of Gene Flow within the Diving Beetle Agabus bipustulatus (Linnaeus, 1767) in Northern Scandinavia

    Get PDF
    The repeated occurrence of habitat-specific polyphyletic evolved ecotypes throughout the ranges of widely distributed species implies that multiple, independent and parallel selection events have taken place. Ecological transitions across altitudinal gradients over short geographical distances are often associated with variation in habitat-related fitness, these patterns suggest the action of strong selective forces. Genetic markers will therefore contribute differently to differences between ecotypes in local hybrid zones. Here we have studied the adaptive divergence between ecotypes of the water beetle Agabus bipustulatus along several parallel altitudinal gradients in northern Scandinavia. This water beetle is well known for its remarkable morphological variation associated with mountain regions throughout the western Palaearctic. Two morphological ecotypes are recognised: a montane type with reduced flight muscles and a lowland type with fully developed muscles. Using a multilocus survey of allozyme variation and a morphological analysis with landmark-based morphometrics, across thirty-three populations and seven altitudinal gradients, we studied the local adaptive process of gene flow and selection in detail. Populations were sampled at three different elevations: below, at and above the tree line. The results indicate that the levels of divergence observed between ecotypes in morphology and allele frequencies at alpha-Glycerophosphate dehydrogenase relative to those shown by neutral molecular markers reflects local diversifying selection in situ. Four main lines of evidence are shown here: (1) A repeated morphological pattern of differentiation is observed across all altitudinal transects, with high reclassification probabilities. (2) Allele and genotype frequencies at the alpha-Gpdh locus are strongly correlated with altitude, in sharp contrast to the presumable neutral markers. (3) Genetic differentiation is two to three times higher among populations across the tree line than among populations at or below. (4) Genetic differentiation between ecotypes within independent mountain areas is reflected by different sets of allozymes
    corecore