42 research outputs found

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Role of trans-Planckian modes in cosmology

    Get PDF
    Motivated by the old trans-Planckian (TP) problem of inflationary cosmology, it has been conjectured that any consistent effective field theory should keep TP modes `hidden' behind the Hubble horizon, so as to prevent them from turning classical and thereby affecting macroscopic observations. In this paper we present two arguments against the Hubble horizon being a scale of singular significance as has been put forward in the TP Censorship Conjecture (TCC). First, refinements of TCC are presented that allow for the TP modes to grow beyond the horizon while still keeping the de-Sitter conjecture valid. Second, we show that TP modes can turn classical even well within the Hubble horizon, which, as such, negates this rationale behind keeping them from crossing it. The role of TP modes is known to be less of a problem in warm inflation, because fluctuations start out usually as classical. This allows warm inflation to be more resilient to the TP problem compared to cold inflation. To understand how robust this is, we identity limits where quantum modes can affect the primordial power spectrum in one specific case.Comment: 33 pages, comments welcome; v2: References updated, matches published versio

    Intranasal Administration as a Route for Drug Delivery to the Brain: Evidence for a Unique Pathway for Albumin

    No full text
    A variety of compounds will distribute into the brain when placed at the cribriform plate by intranasal (i.n.) administration. In this study, we investigated the ability of albumin, a protein that can act as a drug carrier but is excluded from brain by the blood-brain barrier, to distribute into the brain after i.n. administration. We labeled bovine serum albumin with [(125)I] ([(125)I]Alb) and studied its uptake into 11 brain regions and its entry into the blood from 5 minutes to 6 hours after i.n. administration. [(125)I]Alb was present throughout the brain at 5 minutes. Several regions showed distinct peaks in uptake that ranged from 5 minutes (parietal cortex) to 60 minutes (midbrain). About 2–4% of the i.n. [(125)I]Alb entered the bloodstream. The highest levels occurred in the olfactory bulb and striatum. Distribution was dose-dependent, with less taken up by whole brain, cortex, and blood at the higher dose of albumin. Uptake was selectively increased into the olfactory bulb and cortex by the fluid-phase stimulator PMA (phorbol 12-myristate 13-acetate), but inhibitors to receptor-mediated transcytosis, caveolae, and phosphoinositide 3-kinase were without effect. Albumin altered the distribution of radioactive leptin given by i.n. administration, decreasing uptake into the blood and by the cerebellum and increasing uptake by the hypothalamus. We conclude that [(125)I]Alb administered i.n. reaches all parts of the brain through a dose-dependent mechanism that may involve fluid-phase transcytosis and, as illustrated by leptin, can affect the delivery of other substances to the brain after their i.n. administration
    corecore