99 research outputs found

    New Insights into Properties of Large-N Holographic Thermal QCD at Finite Gauge Coupling at (the Non-Conformal/Next-to) Leading Order in N

    Get PDF
    In the context of [1]'s string theoretic dual of large-N thermal QCD-like theories at finite gauge/string coupling (as part of the `MQGP' limit of [2]), we discuss the following. First, up to LO in N, using the results of [3], we show that the local T^3 of [2] is the T^2-invariant sLag of [3] in a resolved conifold. This, together with the results of [4], shows that for a (predominantly resolved or deformed) resolved warped deformed conifold, the local T^3 of [2] in the MQGP limit, is the T^2-invariant sLag of [3] justifying the construction of the delocalized SYZ type IIA mirror of the type IIB background of [1]. Then, using the prescription of [5], we obtain the temperature dependence of the thermal (and electrical) conductivity working up to leading order in N (the number of D3-branes), and upon comparison with [6] show that the results mimic a 1+1-dimensional Luttinger liquid with impurities. Further, including sub-leading non-conformal terms in the metric determined by M (the number of fractional D-branes = the number of colors = 3 in the IR after the end of a Seiberg duality cascade), by looking at respectively the scalar, vector and tensor modes of metric perturbations and using [7]'s prescription of constructing appropriate gauge-invariant perturbations, we obtain respectively the speed of sound, the diffusion constant and the shear viscosity \eta (and \eta/s) including the non-conformal O((g_s M^2) (g_s N_f)/N<<1)-corrections, N_f being the number of flavor D7-branes.Comment: 1+75 pages, LaTeX; Some corrections in Tc-related calculations, results unchange

    Protocol of a natural experiment to evaluate a supermarket intervention to improve food purchasing and dietary behaviours of women (WRAPPED study) in England: a prospective matched controlled cluster design

    Get PDF
    Introduction: Poor diet is a leading risk factor for non-communicable diseases and costs the National Health Service £5.8 billion annually. Product placement strategies used extensively in food outlets, like supermarkets, can influence customers’ preferences. Policy-makers, including the UK Government, are considering legislation to ensure placement strategies promote healthier food purchasing and dietary habits. High-quality scientific evidence is needed to inform future policy action. This study will assess whether healthier placement strategies in supermarkets improve household purchasing patterns and the diets of more than one household member. Methods and analyses: This natural experiment, with a prospective matched controlled cluster design, is set in discount supermarkets across England. The primary objective is to investigate whether enhanced placement of fresh fruit and vegetables improves household-level purchasing of these products after 6 months. Secondary objectives will examine: (1) differences in intervention effects on purchasing by level of educational attainment, (2) intervention effects on the dietary quality of women and their young children, (3) intervention effects on store-level sales of fruit and vegetables and (4) cost-effectiveness of the intervention from individual, retailer and societal perspectives. Up to 810 intervention and 810 control participants will be recruited from 18 intervention and 18 matched control stores. Eligible participants will be women aged 18–45 years, who hold a loyalty card and shop in a study store. Each control store will be matched to an intervention store on: (1) sales profile, (2) neighbourhood deprivation and (3) customer profile. A detailed process evaluation will assess intervention implementation, mechanisms of impact and, social and environmental contexts. Ethics and dissemination: Ethical approval was obtained from the University of Southampton, Faculty of Medicine Ethics Committee (ID 20986.A5). Primary, secondary and process evaluation results will be submitted for publication in peer-reviewed scientific journals and shared with policy-makers. Trial registration number: NCT03573973; Pre-results

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    New Clathrin-Based Nanoplatforms for Magnetic Resonance Imaging

    Get PDF
    Background: Magnetic Resonance Imaging (MRI) has high spatial resolution, but low sensitivity for visualization of molecular targets in the central nervous system (CNS). Our goal was to develop a new MRI method with the potential for non-invasive molecular brain imaging. We herein introduce new bio-nanotechnology approaches for designing CNS contrast media based on the ubiquitous clathrin cell protein. Methodology/Principal Findings: The first approach utilizes three-legged clathrin triskelia modified to carry 81 gadolinium chelates. The second approach uses clathrin cages self-assembled from triskelia and designed to carry 432 gadolinium chelates. Clathrin triskelia and cages were characterized by size, structure, protein concentration, and chelate and gadolinium contents. Relaxivity was evaluated at 0.47 T. A series of studies were conducted to ascertain whether fluorescent-tagged clathrin nanoplatforms could cross the blood brain barriers (BBB) unaided following intranasal, intravenous, and intraperitoneal routes of administration. Clathrin nanoparticles can be constituted as triskelia (18.5 nm in size), and as cages assembled from them (55 nm). The mean chelate: clathrin heavy chain molar ratio was 27.0464.8: 1 fo

    Chronic Intranasal Treatment with an Anti-Aβ30-42 scFv Antibody Ameliorates Amyloid Pathology in a Transgenic Mouse Model of Alzheimer's Disease

    Get PDF
    Amyloid-beta peptide (Aβ)-directed active and passive immunization therapeutic strategies reduce brain levels of Aβ, decrease the severity of beta-amyloid plaque pathology and reverse cognitive deficits in mouse models of Alzheimer's disease (AD). As an alternative approach to passive immunization with full IgG molecules, single-chain variable fragment (scFv) antibodies can modulate or neutralize Aβ-related neurotoxicity and inhibit its aggregation in vitro. In this study, we characterized a scFv derived from a full IgG antibody raised against the C-terminus of Aβ, and studied its passage into the brains of APP transgenic mice, as well as its potential to reduce Aβ-related pathology. We found that the scFv entered the brain after intranasal application, and that it bound to beta-amyloid plaques in the cortex and hippocampus of APP transgenic mice. Moreover, the scFv inhibited Aβ fibril formation and Aβ-mediated neurotoxicity in vitro. In a preventative therapeutic approach chronic intranasal treatment with scFv reduced congophilic amyloid angiopathy (CAA) and beta-amyloid plaque numbers in the cortex of APPswe/PS1dE9 mice. This reduction of CAA and plaque pathology was associated with a redistribution of brain Aβ from the insoluble fraction to the soluble peptide pool. Due to their lack of the effector domain of full IgG, scFv may represent an alternative tool for the treatment of Aβ-related pathology without triggering Fc-mediated effector functions. Additionally, our observations support the possibility that Aβ-directed immunotherapy can reduce Aβ deposition in brain vessels in transgenic mice
    corecore