10 research outputs found

    A rapid one-pot synthesis of 2,4,6-triaryl-3-aroyl-4-hydroxy-1, 1-cyclohexanedicarbonitriles and 2-aminoisophthalonitriles under microwave activation

    No full text
    135-139Ylidenemalononitriles 1 react with a variety of 1,3-diaryl-2-propen-1-ones 2 at ambient temperature and pressure under microwave activation to yield functionalised cyclohexanedicarbonitriles 3 and 2-aminoisophthalonitriles 4 in good yields

    Advanced biorefinery in lower termite-effect of combined pretreatment during the chewing process

    Get PDF
    BACKGROUND: Currently the major barrier in biomass utilization is the lack of an effective pretreatment of plant cell wall so that the carbohydrates can subsequently be hydrolyzed into sugars for fermentation into fuel or chemical molecules. Termites are highly effective in degrading lignocellulosics and thus can be used as model biological systems for studying plant cell wall degradation. RESULTS: We discovered a combination of specific structural and compositional modification of the lignin framework and partial degradation of carbohydrates that occurs in softwood with physical chewing by the termite, Coptotermes formosanus, which are critical for efficient cell wall digestion. Comparative studies on the termite-chewed and native (control) softwood tissues at the same size were conducted with the aid of advanced analytical techniques such as pyrolysis gas chromatography mass spectrometry, attenuated total reflectance Fourier transform infrared spectroscopy and thermogravimetry. The results strongly suggest a significant increase in the softwood cellulose enzymatic digestibility after termite chewing, accompanied with utilization of holocellulosic counterparts and an increase in the hydrolysable capacity of lignin collectively. In other words, the termite mechanical chewing process combines with specific biological pretreatment on the lignin counterpart in the plant cell wall, resulting in increased enzymatic cellulose digestibility in vitro. The specific lignin unlocking mechanism at this chewing stage comprises mainly of the cleavage of specific bonds from the lignin network and the modification and redistribution of functional groups in the resulting chewed plant tissue, which better expose the carbohydrate within the plant cell wall. Moreover, cleavage of the bond between the holocellulosic network and lignin molecule during the chewing process results in much better exposure of the biomass carbohydrate. CONCLUSION: Collectively, these data indicate the participation of lignin-related enzyme(s) or polypeptide(s) and/or esterase(s), along with involvement of cellulases and hemicellulases in the chewing process of C. formosanus, resulting in an efficient pretreatment of biomass through a combination of mechanical and enzymatic processes. This pretreatment could be mimicked for industrial biomass conversion

    In situ lignocellulosic unlocking mechanism for carbohydrate hydrolysis in termites: crucial lignin modification

    Get PDF
    BACKGROUND: Termites are highly effective at degrading lignocelluloses, and thus can be used as a model for studying plant cell-wall degradation in biological systems. However, the process of lignin deconstruction and/or degradation in termites is still not well understood. METHODS: We investigated the associated structural modification caused by termites in the lignin biomolecular assembly in softwood tissues crucial for cell-wall degradation. We conducted comparative studies on the termite-digested (i.e. termite feces) and native (control) softwood tissues with the aid of advanced analytical techniques: (13)C crosspolarization magic angle spinning and nuclear magnetic resonance (CP-MAS-NMR) spectroscopy, flash pyrolysis with gas chromatography mass spectrometry (Py-GC/MS), and Py-GC-MS in the presence of tetramethylammonium hydroxide (Py-TMAH)-GC/MS. RESULTS: The (13)C CP/MAS NMR spectroscopic analysis revealed an increased level of guaiacyl-derived (G unit) polymeric framework in the termite-digested softwood (feces), while providing specific evidence of cellulose degradation. The Py-GC/MS data were in agreement with the (13)C CP/MAS NMR spectroscopic studies, thus indicating dehydroxylation and modification of selective intermonomer side-chain linkages in the lignin in the termite feces. Moreover, Py-TMAH-GC/MS analysis showed significant differences in the product distribution between control and termite feces. This strongly suggests that the structural modification in lignin could be associated with the formation of additional condensed interunit linkages. CONCLUSION: Collectively, these data further establish: 1) that the major β-O-4' (β-aryl ether) was conserved, albeit with substructure degeneracy, and 2) that the nature of the resulting polymer in termite feces retained most of its original aromatic moieties (G unit-derived). Overall, these results provide insight into lignin-unlocking mechanisms for understanding plant cell-wall deconstruction, which could be useful in development of new enzymatic pretreatment processes mimicking the termite system for biochemical conversion of lignocellulosic biomass to fuels and chemicals

    Structural and Thermal Characterization of Wheat Straw Pretreated with Aqueous Ammonia Soaking

    No full text
    Production of renewable fuels and chemicals from lignocellulosic feedstocks requires an efficient pretreatment technology to allow ready access of polysaccharides for cellulolytic enzymes during saccharification. The effect of pretreatment on wheat straw through a low-temperature and low-pressure soaking aqueous ammonia (SAA) process was investigated in this study using Fourier transform infrared (FTIR), pyrolysis–gas chromatography/mass spectroscopy (Py-GC/MS), solid and liquid state nuclear magnetic resonance (NMR), and thermogravimetry/differential thermogravimetry (TG/DTG) to demonstrate the changes in lignin, hemicellulose, and cellulose structure. After treatment of 60 mesh wheat straw particles for 60 h with 28–30% ammonium hydroxide (1:10 solid/liquid) at 50 °C, sugar recovery increased from 14% (untreated) to 67% (SAA treated). The FTIR study revealed a substantial decrease in absorbance of lignin peaks. Solid and liquid state NMR showed minimal lignin structural changes with significant compositional changes. Activation energy of control and pretreated wheat straw was calculated according to the Friedman and ASTM methods and found to be decreased for SAA-treated wheat straw, from 259 to 223 kJ/mol. The SAA treatment was shown to remove significant amounts of lignin without strongly affecting lignin functional groups or structure

    Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    Get PDF
    BACKGROUND: Flowthrough pretreatment of biomass is a critical step in lignin valorization via conversion of lignin derivatives to high-value products, a function vital to the economic efficiency of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. RESULTS: In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05 % (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270 °C on poplar wood in a flowthrough reactor system for 2–10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatments at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. CONCLUSIONS: Elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100 % by improving G unit removal besides S unit removal in flowthrough system. Only mild lignin structural modification was caused by flowthrough pretreatment. A lignin transformation pathway was proposed to explain the complexity of the lignin structural changes during hot water and dilute acid flowthrough pretreatment. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-015-0377-x) contains supplementary material, which is available to authorized users

    Controlling Porosity in Lignin‐Derived Nanoporous Carbon for Supercapacitor Applications

    No full text
    Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials
    corecore