13 research outputs found

    Syn-QG: Syntactic and Shallow Semantic Rules for Question Generation

    Full text link
    Question Generation (QG) is fundamentally a simple syntactic transformation; however, many aspects of semantics influence what questions are good to form. We implement this observation by developing Syn-QG, a set of transparent syntactic rules leveraging universal dependencies, shallow semantic parsing, lexical resources, and custom rules which transform declarative sentences into question-answer pairs. We utilize PropBank argument descriptions and VerbNet state predicates to incorporate shallow semantic content, which helps generate questions of a descriptive nature and produce inferential and semantically richer questions than existing systems. In order to improve syntactic fluency and eliminate grammatically incorrect questions, we employ back-translation over the output of these syntactic rules. A set of crowd-sourced evaluations shows that our system can generate a larger number of highly grammatical and relevant questions than previous QG systems and that back-translation drastically improves grammaticality at a slight cost of generating irrelevant questions.Comment: Some of the results in the paper were incorrec

    DUQGen: Effective Unsupervised Domain Adaptation of Neural Rankers by Diversifying Synthetic Query Generation

    Full text link
    State-of-the-art neural rankers pre-trained on large task-specific training data such as MS-MARCO, have been shown to exhibit strong performance on various ranking tasks without domain adaptation, also called zero-shot. However, zero-shot neural ranking may be sub-optimal, as it does not take advantage of the target domain information. Unfortunately, acquiring sufficiently large and high quality target training data to improve a modern neural ranker can be costly and time-consuming. To address this problem, we propose a new approach to unsupervised domain adaptation for ranking, DUQGen, which addresses a critical gap in prior literature, namely how to automatically generate both effective and diverse synthetic training data to fine tune a modern neural ranker for a new domain. Specifically, DUQGen produces a more effective representation of the target domain by identifying clusters of similar documents; and generates a more diverse training dataset by probabilistic sampling over the resulting document clusters. Our extensive experiments, over the standard BEIR collection, demonstrate that DUQGen consistently outperforms all zero-shot baselines and substantially outperforms the SOTA baselines on 16 out of 18 datasets, for an average of 4% relative improvement across all datasets. We complement our results with a thorough analysis for more in-depth understanding of the proposed method's performance and to identify promising areas for further improvements.Comment: NAACL 2024 Main Conferenc

    An Interactive Query Generation Assistant using LLM-based Prompt Modification and User Feedback

    Full text link
    While search is the predominant method of accessing information, formulating effective queries remains a challenging task, especially for situations where the users are not familiar with a domain, or searching for documents in other languages, or looking for complex information such as events, which are not easily expressible as queries. Providing example documents or passages of interest, might be easier for a user, however, such query-by-example scenarios are prone to concept drift, and are highly sensitive to the query generation method. This demo illustrates complementary approaches of using LLMs interactively, assisting and enabling the user to provide edits and feedback at all stages of the query formulation process. The proposed Query Generation Assistant is a novel search interface which supports automatic and interactive query generation over a mono-linguial or multi-lingual document collection. Specifically, the proposed assistive interface enables the users to refine the queries generated by different LLMs, to provide feedback on the retrieved documents or passages, and is able to incorporate the users' feedback as prompts to generate more effective queries. The proposed interface is a valuable experimental tool for exploring fine-tuning and prompting of LLMs for query generation to qualitatively evaluate the effectiveness of retrieval and ranking models, and for conducting Human-in-the-Loop (HITL) experiments for complex search tasks where users struggle to formulate queries without such assistance.Comment: Intelligence Advanced Research Projects Activity (IARPA) BETTER Research Progra

    CANDLE: Decomposing Conditional and Conjunctive Queries for Task-Oriented Dialogue Systems

    Full text link
    Domain-specific dialogue systems generally determine user intents by relying on sentence-level classifiers which mainly focus on single action sentences. Such classifiers are not designed to effectively handle complex queries composed of conditional and sequential clauses that represent multiple actions. We attempt to decompose such queries into smaller single-action sub-queries that are reasonable for intent classifiers to understand in a dialogue pipeline. We release CANDLE (Conditional & AND type Expressions), a dataset consisting of 3124 utterances manually tagged with conditional and sequential labels and demonstrates this decomposition by training two baseline taggers

    Automatic Construction of Evaluation Suites for Natural Language Generation Datasets

    Get PDF
    Machine learning approaches applied to NLP are often evaluated by summarizing their performance in a single number, for example accuracy. Since most test sets are constructed as an i.i.d. sample from the overall data, this approach overly simplifies the complexity of language and encourages overfitting to the head of the data distribution. As such, rare language phenomena or text about underrepresented groups are not equally included in the evaluation. To encourage more in-depth model analyses, researchers have proposed the use of multiple test sets, also called challenge sets, that assess specific capabilities of a model. In this paper, we develop a framework based on this idea which is able to generate controlled perturbations and identify subsets in text-to-scalar, text-to-text, or data-to-text settings. By applying this framework to the GEM generation benchmark, we propose an evaluation suite made of 80 challenge sets, demonstrate the kinds of analyses that it enables and shed light onto the limits of current generation models

    NusaCrowd: Open Source Initiative for Indonesian NLP Resources

    Full text link
    We present NusaCrowd, a collaborative initiative to collect and unify existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have brought together 137 datasets and 118 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their value is demonstrated through multiple experiments. NusaCrowd's data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and the local languages of Indonesia. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and the local languages of Indonesia. Our work strives to advance natural language processing (NLP) research for languages that are under-represented despite being widely spoken

    A Bird's-Eye Tutorial of Graph Attention Architectures

    Full text link
    Graph Neural Networks (GNNs) have shown tremendous strides in performance for graph-structured problems especially in the domains of natural language processing, computer vision and recommender systems. Inspired by the success of the transformer architecture, there has been an ever-growing body of work on attention variants of GNNs attempting to advance the state of the art in many of these problems. Incorporating "attention" into graph mining has been viewed as a way to overcome the noisiness, heterogenity and complexity associated with graph-structured data as well as to encode soft-inductive bias. It is hence crucial and advantageous to study these variants from a bird's-eye view to assess their strengths and weaknesses. We provide a systematic and focused tutorial centered around attention based GNNs in a hope to benefit researchers dealing with graph-structured problems. Our tutorial looks at GNN variants from the point of view of the attention function and iteratively builds the reader's understanding of different graph attention variants.Comment: 8 pages Tutoria

    The GEM Benchmark:Natural Language Generation, its Evaluation and Metrics

    No full text
    We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for which we are organizing a shared task at our ACL 2021 Workshop and to which we invite the entire NLG community to participate
    corecore