4 research outputs found

    Early-Season Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning Techniques

    Get PDF
    Corn (Zea mays L.) is one of the most sensitive crops to planting pattern and early-season uniformity. The most common method to determine number of plants is by visual inspection on the ground but this field activity becomes time-consuming, labor-intensive, biased, and may lead to less profitable decisions by farmers. The objective of this study was to develop a reliable, timely, and unbiased method for counting corn plants based on ultra-high-resolution imagery acquired from unmanned aerial systems (UAS) to automatically scout fields and applied to real field conditions. A ground sampling distance of 2.4 mm was targeted to extract information at a plant-level basis. First, an excess greenness (ExG) index was used to individualized green pixels from the background, then rows and inter-row contours were identified and extracted. A scalable training procedure was implemented using geometric descriptors as inputs of the classifier. Second, a decision tree was implemented and tested using two training modes in each site to expose the workflow to different ground conditions at the time of the aerial data acquisition. Differences in performance were due to training modes and spatial resolutions in the two sites. For an object classification task, an overall accuracy of 0.96, based on the proportion of corrected assessment of corn and non-corn objects, was obtained for local (per-site) classification, and an accuracy of 0.93 was obtained for the combined training modes. For successful model implementation, plants should have between two to three leaves when images are collected (avoiding overlapping between plants). Best workflow performance was reached at 2.4 mm resolution corresponding to 10 m of altitude (lower altitude); higher altitudes were gradually penalized. The latter was coincident with the larger number of detected green objects in the images and the effectiveness of geometry as descriptor for corn plant detection.Sociedad Argentina de Informática e Investigación Operativ

    Early-Season Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning Techniques

    Get PDF
    Corn (Zea mays L.) is one of the most sensitive crops to planting pattern and early-season uniformity. The most common method to determine number of plants is by visual inspection on the ground but this field activity becomes time-consuming, labor-intensive, biased, and may lead to less profitable decisions by farmers. The objective of this study was to develop a reliable, timely, and unbiased method for counting corn plants based on ultra-high-resolution imagery acquired from unmanned aerial systems (UAS) to automatically scout fields and applied to real field conditions. A ground sampling distance of 2.4 mm was targeted to extract information at a plant-level basis. First, an excess greenness (ExG) index was used to individualized green pixels from the background, then rows and inter-row contours were identified and extracted. A scalable training procedure was implemented using geometric descriptors as inputs of the classifier. Second, a decision tree was implemented and tested using two training modes in each site to expose the workflow to different ground conditions at the time of the aerial data acquisition. Differences in performance were due to training modes and spatial resolutions in the two sites. For an object classification task, an overall accuracy of 0.96, based on the proportion of corrected assessment of corn and non-corn objects, was obtained for local (per-site) classification, and an accuracy of 0.93 was obtained for the combined training modes. For successful model implementation, plants should have between two to three leaves when images are collected (avoiding overlapping between plants). Best workflow performance was reached at 2.4 mm resolution corresponding to 10 m of altitude (lower altitude); higher altitudes were gradually penalized. The latter was coincident with the larger number of detected green objects in the images and the effectiveness of geometry as descriptor for corn plant detection.Sociedad Argentina de Informática e Investigación Operativ

    Early-Season Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning Techniques

    Get PDF
    Corn (Zea mays L.) is one of the most sensitive crops to planting pattern and early-season uniformity. The most common method to determine number of plants is by visual inspection on the ground but this field activity becomes time-consuming, labor-intensive, biased, and may lead to less profitable decisions by farmers. The objective of this study was to develop a reliable, timely, and unbiased method for counting corn plants based on ultra-high-resolution imagery acquired from unmanned aerial systems (UAS) to automatically scout fields and applied to real field conditions. A ground sampling distance of 2.4 mm was targeted to extract information at a plant-level basis. First, an excess greenness (ExG) index was used to individualized green pixels from the background, then rows and inter-row contours were identified and extracted. A scalable training procedure was implemented using geometric descriptors as inputs of the classifier. Second, a decision tree was implemented and tested using two training modes in each site to expose the workflow to different ground conditions at the time of the aerial data acquisition. Differences in performance were due to training modes and spatial resolutions in the two sites. For an object classification task, an overall accuracy of 0.96, based on the proportion of corrected assessment of corn and non-corn objects, was obtained for local (per-site) classification, and an accuracy of 0.93 was obtained for the combined training modes. For successful model implementation, plants should have between two to three leaves when images are collected (avoiding overlapping between plants). Best workflow performance was reached at 2.4 mm resolution corresponding to 10 m of altitude (lower altitude); higher altitudes were gradually penalized. The latter was coincident with the larger number of detected green objects in the images and the effectiveness of geometry as descriptor for corn plant detection.Sociedad Argentina de Informática e Investigación Operativ

    Classification of plants in corn fields using machine learning techniques

    Get PDF
    Master of ScienceDepartment of Computer ScienceWilliam H. HsuThis thesis addresses the tasks of detecting vegetation and classifying plants into target crops and weeds using combinations of machine learning and pattern recognition algorithms and models. Solutions to these problems have many useful applications in precision agriculture, such as estimating the yield of a target crop or identifying weeds to help automate the selective application of weedicides and thereby reducing cost and pollution. The novel contribution of this work includes development and application of image processing and computer vision techniques to create training data with minimal human intervention, thus saving substantial human time and effort. All of the data used in this work was collected from corn fields and is in the RGB format. As part of this thesis, I first discuss several steps that are part of a general methodology and data science pipeline for these tasks, such as: vegetation detection, feature engineering, crop row detection, training data generation, training, and testing. Next, I develop software components for segmentation and classification subtasks based on extant image processing and machine learning algorithms. I then present a comparison of different classifier models developed through this process using their Receiver Operating Characteristic (ROC) curves. The difference in models lies in the way they are trained - locally or globally. I also investigate the effect of the altitude at which data is collected on the performance of classifiers. Scikit-learn, a Python library for machine learning, is used to train decision trees and other classification learning models. Finally, I compare the precision, recall, and accuracy attained by segmenting (recognizing the boundary of) plants using the excess green index (ExG) with that of a learned Gaussian mixture model. I performed all image processing tasks using OpenCV, an open source computer vision library
    corecore