18 research outputs found

    Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis

    Get PDF
    [EN] BackgroundThe importance of Indian germplasm as origin and primary center of diversity of cultivated melon is widely accepted. Genetic diversity of several collections from Indian has been studied previously, although an integrated analysis of these collections in a global diversity perspective has not been possible. In this study, a sample of Indian collections together with a selection of world-wide cultivars to analyze the genetic diversity structure based on Genotype by Sequence data.ResultsA set of 6158 informative Single Nucleotide Polymorphism (SNP) in 175 melon accessions was generated. Melon germplasm could be classified into six major groups, in concordance with horticultural groups. Indian group was in the center of the diversity plot, with the highest genetic diversity. No strict genetic differentiation between wild and cultivated accessions was appreciated in this group. Genomic regions likely involved in the process of diversification were also found. Interestingly, some SNPs differentiating inodorus and cantalupensis groups are linked to Quantitiative Trait Loci involved in ripening behavior (a major characteristic that differentiate those groups). Linkage disequilibrium was found to be low (17kb), with more rapid decay in euchromatic (8kb) than heterochromatic (30kb) regions, demonstrating that recombination events do occur within heterochromatn, although at lower frequency than in euchromatin. Concomitantly, haplotype blocks were relatively small (59kb). Some of those haplotype blocks were found fixed in different melon groups, being therefore candidate regions that are involved in the diversification of melon cultivars.ConclusionsThe results support the hypothesis that India is the primary center of diversity of melon, Occidental and Far-East cultivars have been developed by divergent selection. Indian germplasm is genetically distinct from African germplasm, supporting independent domestication events. The current set of traditional Indian accessions may be considered as a population rather than a standard collection of fixed landraces with high intercrossing between cultivated and wild melons.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO)-FEDER grant AGL2015-64625-C2-R to AJM (project conception, experiments, data acquisition and analysis, manuscript writing, publication costs), AGL2017-85563-C2-1-R and the PROMETEO/2017/078 grant funded by Generalitat Valenciana (Conselleria d'Educacio, Investigacio, Cultura i Esport) to BP (project conception, provide samples and manuscript drafting). AD was supported by a Jae-Doc contract from CSIC (experiments and manuscript drafting).Gonzalo, M.; Díaz Bermúdez, A.; Dhillon, NPS.; Reddy, UK.; Picó Sirvent, MB.; Monforte Gilabert, AJ. (2019). Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics. 20:1-13. https://doi.org/10.1186/s12864-019-5784-0S11320Munger HM, Robinson RW. Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rep. 1991;14:43–4.Pitrat M, Hanelt P, Hammer K. Some comments on infraspecific classification of cultivars of melon. Proc Cucurbitaceae. 2000;2000(510):29–36.Pitrat M. Melon genetic resources: phenotypic diversity and horticultural taxonomy. In: Grumet R, Katzir N, editors. Genetics and genomics of the Cucurbitaceae. New York: J Garcia-Mas Springer; 2017. p. 25–60.Stepansky A, Kovalski I, Perl-Treves R. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol. 1999;217(3–4):313–32.Monforte AJ, Garcia-Mas J, Arus P, Minch E. Genetic variability in melon based on microsatellite variation. Plant Breed. 2003;122(2):153–7.Esteras C, Formisano G, Roig C, Diaz A, Blanca J, Garcia-Mas J, Gomez-Guillamon ML, Lopez-Sese AI, Lazaro A, Monforte AJ, et al. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet. 2013;126(5):1285–303.Sebastian P, Schaefer H, Telford IRH, Renner SS. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci U S A. 2010;107(32):14269–73.Newton C. Growing, gathering and offering: predynastic plant economy at Adaïma (upper Egypt). In: R. Cappers Groningen Institute of Archaeology, editor. Fields of change: progress in African archaeobotany; 2007. p. 139–55.Paris HS. Overview of the origins and history of the five major cucurbit crops: issues for ancient DNA analysis of archaeological specimens. Veg Hist Archaeobotany. 2016;25(4):405–14.Sabato D, Esteras C, Oscar G, Peña-Chocarro L, Leida C, Ucchesu M, Usai A, Bacchetta G, Pico B. Molecular and morphological characterisation of the oldest Cucumis melo L. seeds found in the Western Mediterranean Basin. Archaeol. Anthropol. Sci. 2017;11(3):789–810.Serres-Giardi L, Dogimont C. How microsatellite diversity helps to understand the domestication history of melon. In: Cucurbitaceae 2012: proceedings of the Xth Eucarpia meeting on genetics and breeding of Cucurbitaceae; 2012. p. 254–63.Endl J, Achigan-Dako EG, Pandey AK, Monforte AJ, Pico B, Schaefer H. Repeated domestication of melon (Cucumis melo) in Africa and Asia and a new close relative from India. Am J Bot. 2018;105(10):1662–71.Dhillon NPS, Ranjana R, Singh K, Eduardo I, Monforte AJ, Pitrat M, Dhillon NK, Singh PP. Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genet Resour Crop Evol. 2007;54(6):1267–83.Dhillon NPS, Singh J, Fergany M, Monforte AJ, Sureja K. Phenotypic and molecular diversity among landraces of snapmelon (Cucumis melo var. momordica) adapted to the hot and humid tropics of eastern India. Plant Genet Resour. 2009;7(3):291–300.Fergany M, Kaur B, Monforte AJ, Pitrat M, Rys C, Lecoq H, Dhillon NPS, Dhaliwal SS. Variation in melon (Cucumis melo) landraces adapted to the humid tropics of southern India. Genet Resour Crop Evol. 2011;58(2):225–43.Roy A, Bal SS, Fergany M, Kaur S, Singh H, Malik AA, Singh J, Monforte AJ, Dhillon NPS. Wild melon diversity in India (Punjab state). Genet Resour Crop Evol. 2012;59(5):755–67.Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12(7):499–510.Nimmakayala P, Tomason YR, Abburi VL, Alvarado A, Saminathan T, Vajja VG, Salazar G, Panicker GK, Levi A, Wechter WP, et al. Genome-wide differentiation of various melon horticultural groups for use in GWAS for fruit firmness and construction of a high resolution genetic map. Front Plant Sci. 2016;7:1437.Gur A, Tzuri G, Meir A, Sa'ar U, Portnoy V, Katzir N, Schaffer AA, Li L, Burger J, Tadmor Y. Genome-wide linkage-disequilibrium mapping to the candidate gene level in melon (Cucumis melo). Sci Rep. 2017;7:9770.Pavan S, Marcotrigiano AR, Ciani E, Mazzeo R, Zonno V, Ruggieri V, Lotti C, Ricciardi L. Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genomics. 2017;18:59.Deleu W, Esteras C, Roig C, González-To M, Fernández-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arús P, Nuez F, Monforte AJ, Picó M, Garcia-Mas J. A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biology. 2009;9(1):90.Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Pico B. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet. 2015;16:28.Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 2013;45(12):1510–U1149.Wang Y-L, Gao L-Y, Yang S-Y, Xu Y-B, Zhu H-Y, Yang L-M, Li Q, Hu J-B, Sun S-R, Ma C-S. Molecular diversity and population structure of oriental thin-skinned melons, Cucumis melo subsp agrestis, revealed by a set of core SSR markers. Sci Hortic. 2018;229:59–64.Zhang Y, Fan X, Aierken Y, Ma X, Yi H, Wu M. Genetic diversity of melon landraces (Cucumis melo L.) in the Xinjiang Uygur autonomous region on the basis of simple sequence repeat markers. Genet Resour Crop Evol. 2017;64(5):1023–35.Omari S, Kamenir Y, Benichou JIC, Pariente S, Sela H, Perl-Treves R. Landraces of snake melon, an ancient middle eastern crop, reveal extensive morphological and DNA diversity for potential genetic improvement. BMC Genet. 2018;19:34.Tomason Y, Nimmakayala P, Levi A, Reddy UK. Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon. Mol Breed. 2013;31(4):829–41.Vegas J, Garcia-Mas J, Monforte AJ. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet. 2013;126(6):1531–44.Rios P, Argyris J, Vegas J, Leida C, Kenigswald M, Tzuri G, Troadec C, Bendahmane A, Katzir N, Pico B, et al. ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. Plant J. 2017;91(4):671–83.Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ, Garcia-Mas J. Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet. 2008;116(4):589–602.Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, Ramos-Onsins SE, Garcia-Mas J. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics. 2015;16:4.Comadran J, Ramsay L, MacKenzie K, Hayes P, Close TJ, Muehlbauer G, Stein N, Waugh R. Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theor Appl Genet. 2011;122(3):523–31.Vos PG, Paulo MJ, Voorrips RE, Visser RGF, van Eck HJ, van Eeuwijk FA. Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. Theor Appl Genet. 2017;130(1):123–35.Ruggieri V, Francese G, Sacco A, D'Alessandro A, Rigano MM, Parisi M, Milone M, Cardi T, Mennella G, Barone A. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol. 2014;14:337.Bauchet G, Grenier S, Samson N, Bonnet J, Grivet L, Causse M. Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by genome wide association study. Theor Appl Genet. 2017;130(5):875–89.Dhillon NPS, Monforte AJ, Pitrat M, Pandey S, Singh PK, et al. Melon landraces of India: contributions and importance. Plant Breeding Rev. 2012;35:85–150.Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A. 2012;109(29):11872–7.Yoo J, Lee Y, Kim Y, Rha SY, Kim Y. SNP analyzer 2.0: a web-based integrated workbench for linkage disequilibrium analysis and association analysis. BMC Bioinf. 2008;9:290.Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–20.Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma. 2005;1:47–50.Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population-structure. Evolution. 1984;38(6):1358–70.Peltier J. LOESS utility for excel. Peltier Tech Blog. http://peltiertech.com/WordPress/loess-smoothing-in-excel . 2009

    Long-read bitter gourd (Momordica charantia) genome and the genomic architecture of nonclassic domestication

    Get PDF
    ArticleProceedings of the National Academy of Sciences. 117(25): 14543-14551. (2020)journal articl

    Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016

    Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support. FUNDING: Bill & Melinda Gates Foundation

    Nations within a nation: variations in epidemiological transition across the states of India, 1990–2016 in the Global Burden of Disease Study

    Get PDF
    18% of the world's population lives in India, and many states of India have populations similar to those of large countries. Action to effectively improve population health in India requires availability of reliable and comprehensive state-level estimates of disease burden and risk factors over time. Such comprehensive estimates have not been available so far for all major diseases and risk factors. Thus, we aimed to estimate the disease burden and risk factors in every state of India as part of the Global Burden of Disease (GBD) Study 2016

    Genome-Wide Analysis of Simple Sequence Repeats in Bitter Gourd (Momordica charantia)

    No full text
    Bitter gourd (Momordica charantia) is widely cultivated as a vegetable and medicinal herb in many Asian and African countries. After the sequencing of the cucumber (Cucumis sativus), watermelon (Citrullus lanatus), and melon (Cucumis melo) genomes, bitter gourd became the fourth cucurbit species whose whole genome was sequenced. However, a comprehensive analysis of simple sequence repeats (SSRs) in bitter gourd, including a comparison with the three aforementioned cucurbit species has not yet been published. Here, we identified a total of 188,091 and 167,160 SSR motifs in the genomes of the bitter gourd lines ‘Dali-11’ and ‘OHB3-1,’ respectively. Subsequently, the SSR content, motif lengths, and classified motif types were characterized for the bitter gourd genomes and compared among all the cucurbit genomes. Lastly, a large set of 138,727 unique in silico SSR primer pairs were designed for bitter gourd. Among these, 71 primers were selected, all of which successfully amplified SSRs from the two bitter gourd lines ‘Dali-11’ and ‘K44’. To further examine the utilization of unique SSR primers, 21 SSR markers were used to genotype a collection of 211 bitter gourd lines from all over the world. A model-based clustering method and phylogenetic analysis indicated a clear separation among the geographic groups. The genomic SSR markers developed in this study have considerable potential value in advancing bitter gourd research

    Diversity among melon (Cucumis melo L.) landraces from the Indo-Gangetic plains of India and their genetic relationship with USA melon cultivars

    Full text link
    We report here the first broad genetic characterization of farmer-developed landraces of melon (Cucumis melo L.) from the Indo-Gangetic plains of India, an area overlooked in previous melon genetic diversity analyses of Indian melon germplasm. Eighty-eight landraces from three melon Groups in two subspecies (C. melo subsp. agrestis Momordica Group, and C. melo subsp. melo Cantalupensis Group and Reticulatus Group) were collected from the four agro-ecological regions (six sub-regions) of two northern states of the Indo-Gangetic plains of India, Uttar Pradesh and Uttarakhand. Significant differences were found among the landraces and eight USA Reticulatus Group reference cultivars for 18 plant and fruit traits: no. of primary branches per plant, days to marketable maturity, sex expression, fruit shape, flesh colour, netting, no. of fruit per plant, fruit weight, shelf life, total soluble solids (A degrees Bx), ascorbic acid (mg/100 g), titratable acidity (%), fruit length and diameter, seed cavity length and diameter, flesh thickness, and resistance to Cucumber mosaic virus. The three melon groups differed significantly for 10 of the plant and fruit traits. Cantalupensis Group and Reticulatus Group accessions were andromonoecious, and the Momordica Group was monoecious. Neighbour-joining (NJ) tree and factorial correspondence analysis (FCA) of simple sequence repeat loci also revealed a high level of genetic variability in this germplasm. The 96 melon genotypes clustered into five groups in the NJ tree analysis: the 16 Indian Reticulatus Group accessions and eight USA reference cultivars formed a distinct group; and the 60 Cantalupensis Group accessions clustered in four other groups with the 12 Momordica Group accessions in a distinct subgroup of one of the Cantalupensis groups. The FCA plot largely confirmed the NJ tree with three distinct groups, one for each melon group. The close affinity of the Indian and USA Reticulatus melons was not unexpected, but it is not clear whether it was inherent in the group and maintained as Reticulatus melons moved from India through Central Asia and Europe to North America, or the result of recent intercrossing of Indian landraces with the USA-derived cultivars and selection for a broad range of Reticulatus type melons.Malik, AA.; Vashisht, VK.; Singh, K.; Sharma, A.; Singh, DK.; Singh, H.; Monforte Gilabert, AJ.... (2014). Diversity among melon (Cucumis melo L.) landraces from the Indo-Gangetic plains of India and their genetic relationship with USA melon cultivars. Genetic Resources and Crop Evolution. 61(6):1189-1208. doi:10.1007/s10722-014-0101-xS11891208616Anon (1954) New vegetable varieties. List I. Proc Am Soc Hortic Sci 63:503–524Anon (1968) Dulce cantaloupe. Texas A&M University, Texas Agricultural Experiment Station, College Station, Texas, Leaflet L-760, August 1968Bains MS, Kang US (1963) Inheritance of some flower and fruit characters in muskmelon. Indian J Genet Plant Breed 23:101–106Bajaj LK, Kaur G (1981) Spectrophotometric determination of L-ascorbic acid in vegetables and fruits. Analyst 106:117–120Bohn GW, Whitaker TW, Davis GN (1964) Campo. Western Grower and Shipper 35:22Bohn GW, Davis GN, Foster RE, Whitaker TW (1965) Campo and Jacumba. New cantaloupe varieties for the southwest. Calif Agric 19:8–10Bohn GW, Andrus CF, Correa RT (1969) Cooperative muskmelon breeding program in Texas, 1955–67: new rating scales and index selection facilitate development of disease-resistant cultivars adapted to different geographical areas. Technical Bulletin No. 1405, 25 pp, Agricultural Research Service, U.S. Department of AgricultureBrickell CD, Baum BR, Hetterscheid WLA, Leslie AC, McNeill J, Trehane P, Vrugtman F, Wiersema JH (2004) International code of nomenclature for cultivated plants. Acta Hortic 647(9–12):28–30Burger Y, Paris HS, Cohen R, Katzir N, Tadmor Y, Lewinsohn E, Schaffer AA (2010) Genetic diversity of Cucumis melo. In: Janick J (ed) Horticultural reviews 36:165–198Casanueva A, Foncelle B, Nicolet JE, Doon V, Olive SM (2010) http://www.faqs.org/patents/app/20100034952Chadha ML, Nandpuri KS (1980) Hybrid vigour studies in muskmelon. Indian J Hortic 37:276–282Chelliah S, Sambadam CN (1974) Inheritance of bitter principles in the interspecific cross between Cucumis callosus (Rottl.) Cogn., and Cucumis melo L. S Indian Hortic 22:62–64Chiba N, Suwabe K, Nunome T, Hirai M (2003) Development of microsatellite markers in melon (Cucumis melo L.) and their application to major cucurbit crops. Breed Sci 53:21–27Correa RT (1977) New disease-resistant cantaloupe developed. Texas Agriculture Program Summer, p 26Crosby K, Jifon J, Leskovar D (2007) ‘Pacal’ orange-casaba, and ‘Chujuc’ Western-Shipper cantaloupe: two new melon cultivars from the Texas Agricultural Experiment Station. HortScience 42:1013 (Abstract)Crosby KM, Jifon JL, Leskovar DI (2008) ‘Chujuc’, a new powdery mildew-resistant U.S. Western-Shipper melon with high sugar and β-carotene content. HortScience 43:1904–1906Danin-Poleg Y, Reis N, Tzuri G, Katzir N (2001) Development and characterization of microsatellite markers in Cucumis. Theor Appl Genet 102:61–72Davis RM (1970) Vein tracts not sutures in cantaloupe. HortScience 5:86Deleu W, Esteras C, Roig C, González-To M, Fernández-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arús P, Nuez F, Monforte AJ, Picó MB, Garcia-Mas J (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90Dhillon NPS, Rajana R, Singh K, Eduardo I, Monforte AJ, Pitrat M, Dhillon NK, Singh PP (2007) Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genet Resour Crop Evol 54:1267–1283Dhillon NPS, Singh J, Fergany M, Monforte AJ, Sureja AK (2009) Phenotypic and molecular diversity among landraces of snapmelon (Cucumis melo var. momordica) adapted to the hot and humid tropics of eastern India. Plant Genet Resour 7:291–300Dhillon NPS, Monforte AJ, Pitrat M, Pandey S, Singh PK, Reitsma KR, Garcia-Mas J, Sharma A, McCreight JD (2012) Melon landraces of India: contributions and importance. In: Janick J (ed) Plant breeding reviews. Wiley, Hoboken, NJ, pp 85–150Diaz JA, Mallor C, Soria C, Camero R, Garzo E, Fereres A, Alvarez JM, Gomez-Guillamon ML, Luis-Artega M, Moriones E (2003) Potential source of resistance for melon to nonpersistently aphid-borne viruses. Plant Dis 87:960–964Dogimont C, Lecomte C, Périn C, Thabuis A, Lecoq H, Pitrat M (2000) Identification of QTLs contributing to resistance to different strains of cucumber mosaic cucumovirus in melon. Acta Hortic 510:391–398Doyle JJ, Doyle JL (1990) Isolation of DNA from fresh tissue. Focus 12:13–15Esquinas-Alcazar JT, Gulick PJ (1983) Genetic resources of Cucurbitaceae—a global report. International Board for Plant Genetic Resources, RomeEssafi A, Díaz-Pendón JA, Moriones E, Monforte AJ, Gacria-Mas A, Martín-Hernández AM (2009) Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon PI 161375. Theor Appl Genet 118:275–284Esteras C, Formisano G, Roig C, Díaz A, Blanca J, Garcia-Mas J, Gómez-Guillamón ML, López-Sesé AI, Lázaro A, Monforte AJ, Picó B (2013) SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 126:1285–1303FAO (2011) FAOSTAT, ProdSTAT-Crops#1.faostat.fao.org. Accessed 1 March 2013Fergany M, Kaur B, Monforte AJ, Pitrat M, Lecoq CH, Dhillon NPS, Dhaliwal SS (2011) Variation in melon (Cucumis melo) landraces adapted to the humid tropics of southern India. Genet Resour Crop Evol 55:225–243Fernández-Silva I, Eduardo I, Blanca J, Esteras C, Picó B, Nuez F, Arús P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150Ganesan J, Sambandam CN (1979) Earliness index in muskmelon (Cucumis melo L.). AUARA 7(8):1–6Garcia-Mas J, Oliver M, Gómez-Paniagua H, DeVicente MC (2000) Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor Appl Genet 101:860–864Ghosh SP (1991) Agroclimatic zones specific research—Indian perspective under NARP. ICAR, PusaGonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arús P, Monforte AJ (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811Harwood RR, Markarian D (1968) A genetic survey of resistance to powdery mildew in muskmelon. J Hered 59:213–217Henning MJ, Munger HM, Jahn MM (2005) ‘Hannah’s Choice F1’: a new muskmelon hybrid with resistance to powdery mildew, Fusarium race 2, and potyviruses. HortScience 40:492–493Jagger IC, Scott GW (1937) Development of powdery mildew resistant cantaloupe No. 45. US Dep Agric Circ 441:1–5Jeffrey C (1980) A review of the Cucurbitaceae. Bot J Linn Soc 81:233–247Kerje T, Grum M (2000) The origin of melon, Cucumis melo: a review of the literature. Acta Hortic 510:37–44Kirkbride JH Jr (1993) Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway, Boone, NCLiu K, Muse SV (2005) Powermaker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129McCreight JD, Kishaba AN, Bohn GW (1984) AR Hale’s Best Jumbo, AR 5, and AR Topmark, melon aphid-resistant muskmelon breeding lines. HortScience 19:309–310McCreight JD, Bohn GW, Kishaba AM (1992) “Pedigree” of PI 414723 melon. Cucurbit Genet Coop Rep 15:51–52McCreight JD, Staub JE, Koppar NM, Srivastava UC (1993) Indo-U.S. Cucumis germplasm expedition. HortScience 28:492McCreight JD, Staub JE, Wehner TC, Dhillon NPS (2013) Gone global: familiar and exotic cucurbits have Asian origins. HortScience 48:1078–1089Mittre V (1974) Palaeobotanical evidence in India. In: Hutchinson J (ed) Evolutionary studies in world crops, diversity and changes in Indian subcontinent. Cambridge University Press, Cambridge, pp 3–30Monforte AJ, Garcia-Mas J, Arús P (2003) Genetic variability in melon based on microsatellite variation. Plant Breed 122:153–157Munger HM, Robinson RW (1991) Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rep 43:43–44Munshi AD, Alvarez JM (2004) Hybrid melon development. In: Singh PK, Dasgupta SK, Tripathi SK (eds) Hybrid vegetable development, Food Products Press, NY, pp 323–362Nandpuri KS, Singh S (1972) Development of Hara Madhu—a breeding program. 3rd International symposium on subtropical and tropical horticulture, Bangalore, India (Abstract)Nandpuri KS, Singh S, Lal T (1974) Combining ability studies in muskmelon (Cucumis melo L). J Res Punjab Agric Univ 11:225–229Nandpuri KS, Singh S, Lal T (1975) Punjab sunehri: a new variety of muskmelon. Progress Farm 21–23Nandpuri KS, Singh S, Lal T (1982) Punjab hybrid—a new variety of muskmelon. Progress Farm 3–4Naudin CV (1859) Essais d’une monographie des espèces et des varieties du genre Cucumis. Ann Sci Nat Bot Sér 4(11):5–87Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170Norton JD (1968) Southland cantaloupe-Auburn developed variety fits southern need. Auburn Univ (Ala) Agric Exp Stn Highlights Agric Res 15(4)Norton JD (1970) Southland—a large cantaloupe for the South. Auburn Univ (Ala) Agric Exp Stn Leafl 79Norton JD (1971) Gulfcoast—a sweet cantaloupe for the produce chain store market. Agric Exp Stn Auburn Univ Leafl 82Pandey S, Rai M, Prasanna HC, Kalloo G (2008) ‘Kashi Madhu’: a new muskmelon cultivar with high total soluble solids. HortScience 43:245–246Paris HS, Amar Z, Lev E (2012) Medieval emergence of sweet melons, Cucumis melo (Cucurbitaceae). Ann Bot (Lond) 110:23–33Perrier X, Jacquemoud-Collet JP (2006) DARwin software http://darwin.cirad.fr/Pitrat M (2008) Melon. In: Prohens J, Nuez F (eds) Handbook of plant breeding. Springer, New York, pp 283–315Pitrat M (2012) Domestication and diversification of melon. In: Sari N Solmaz I Aras V (eds) Cucurbitaceae 2012, proceedings of the Xth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, Antalya (Turkey), pp 31–39, 15–18 Oct 2012Pitrat M, Hanelt P, Hammer K (2000) Some comments on infraspecific classification of cultivars of melon. Acta Hortic 510:29–36Pryor DE, Whitaker TW, Davis GN (1946) The development of powdery mildew resistant cantaloupes. Proc Am Soc Hortic Sci 47:347–356Robinson RW, Decker-Walters DS (1997) Cucurbits. CAB International, New YorkRoy A, Bal SS, Fergany M, Kaur S, Singh H, Malik AA, Singh J, Monfore AJ, Dhillon NPS (2012) Wild melon diversity in India (Punjab State). Genet Resour Crop Evol 59:755–767Schaefer H, Heibl C, Renner SS (2009) Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc R Soc Bot 276:843–851Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci USA 107:14269–14273Sehgal JL, Mandal DK, Mandal C, Vadivelu S (1992) Agro-ecological regions of India, 2nd edn. Technical Bulletin No. 24, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, India, 130 pSeshadri VS (1986) Cucurbits. In: Bose TK, Som MG (eds) Vegetable crops in India. Naya Prokash, Calcutta, pp 91–164Stepansky A, Kovalski I, Perl-Treves R (1999) Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 217:313–332Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739Tapley WT, Enzie WD, van Eseltine GP (1937) The vegetables of New York. IV. The cucurbits. Report of the New York State Agricultural Experiment Station for the year ending June 30, 1935, Lyon Company, Albany, New YorkUSDA, ARS (2013) National Genetic Resources Program. Germplasm Resources Information Network—(GRIN). [Online database]. National Germplasm Resources Laboratory, Beltsville, MD. http://www.ars-grin.gov/cgi-bin/npgs/swish/accboth?query=PI+140471Whitaker TW, Davis GN (1962) Cucurbits: botany, cultivation and utilization. Interscience, New YorkWhitaker TW, Jagger IC (1937) Breeding and improvement of cucurbits. Yearbook of Agriculture. US Department of Agriculture. Government Printing Office, Washington, DC, pp 207–232Zink FW (1991) Origin of Fusarium wilt resistance in Texas AES muskmelon cultivars. Plant Dis 75:24–2

    Resistance to Three Distinct Begomovirus Species in the Agronomical Superior Tropical Pumpkin Line AVPU1426 Developed at the World Vegetable Center

    No full text
    The Squash Leaf Curl China Virus (SLCCNV) and Tomato Leaf Curl New Delhi Virus (ToLCNDV) are species of Begomovirus (whitefly-vectored Geminiviridae) and cause serious damage to the cucurbit crops of the genus Cucurbita in the areas of South and Southeast Asia, across Asia, the Middle East and the Mediterranean, respectively. Cucurbita moschata’s inbred line AVPU1426, developed at the World Vegetable Center (WorldVeg) from a Bangladeshi landrace through pedigree selection, was observed to be resistant to both begomoviruses in field tests conducted at the WorldVeg Research and Training Station, Kasetsart University, Kamphaeng Saen, Thailand, which is a hotspot for these viruses. When AVPU1426 was tested for reaction to inoculation by viruliferous whiteflies with Squash Leaf Curl Philippines Virus (Taiwan strain) (SLCPV-TW) in the screen net-house at WorldVeg headquarters in Taiwan, it showed good resistance, though SLCPV-TW DNA-A could be detected in all inoculated plants, indicating that it did not show immunity to this virus. The objective of this study was to validate the resistance to SLCCNV and ToLCNDV in AVPU1426 by using whitefly-mediated inoculations to determine the mode of inheritance of the resistance. The results showed that AVPU1426 was resistant to SLCCNV and ToLCNDV. Upon crossing AVPU1426 with a susceptible check variety, Waltham Butternut, the resistance to both begomoviruses was observed to be conferred by a single recessive gene. This open-pollinated pumpkin line AVPU1426 bears flat round, mottled green immature fruits with yellow flesh in mature fruit. The fruit yield of AVPU1426 (20.74 t/ha−1) was comparable to ‘Rajah’ (18.61 t/ha−1), a recently released commercial F1 hybrid of East-West Seed (EWS). The fruit of AVPU1426 were estimated to have a good average β-carotene content (1.57 mg/100 g fresh weight). This line is a good source to breed pumpkins resistant to the three begomoviruses
    corecore