13 research outputs found

    Efficacy of Multifunctionalized Saccharide Constructs for the Attenuation of Amyloid-beta Toxicity

    Get PDF
    There is evidence that amyloid-beta (Aβ) toxicity is mediated through interactions and binding with neuronal surface sialic acids in Alzheimer’s disease (AD). The binding affinity is higher if the sialic acids are clustered and toxicity of Aβ was attenuated by removal of neuronal sialic acids. Thus, interfering with cell membrane-Aβ binding using biomimetics that could reproduce the clustered sialic acid structure could present us with a potential target for therapeutic intervention in AD. Based on this hypothesis, we developed several multifunctionalized sialic acid labeled chitosan compounds of different valency, or number of sialic acid per chitosan molecule, to attenuate Aβ toxicity. A cross-linker, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) was used, which provided control over the degree of labeling of chitosan. After characterization, the ability of the complexes to attenuate toxicity of Aβ(1-40) was investigated in vitro. We found that all linear polysialylated complexes showed significant ability to attenuate Aβ toxicity, with optimum balance between intrinsic toxicity and protection around 37% labeling of chitosan. Moreover, unlabeled chitosan also showed some level of protective properties to the labeled compounds. Then, four biological sugars that are structural analogs of sialic acid (N-Acetylneuraminic acid) were used to decorate approximately 35% of the chitosan backbone using EDC chemistry. After characterization, the ability of these sugar complexes to attenuate toxicity of Aβ was investigated in vitro. We investigated whether sugars other than sialic acid provided better toxicity attenuation and attempted to understand the impact of sub-structures or unique –R groups of sialic acid and its analogs in Aβ toxicity attenuation. Our results show that oxygen substitution in the ring structure contributes to the intrinsic toxicity but also plays a role in Aβ toxicity attenuation. Similarly, the multi –OH tail present in sialic acid plays an important role in Aβ toxicity attenuation. This approach of designing effective biomimetics and of determining the structure-activity relationship has relevance with respect to the development of new intelligent class of therapeutic agents for AD. Although this work focuses on AD, this approach can be extended to other diseases involving misfolded proteins

    Quantifying regional α -synuclein, amyloid β, and tau accumulation in Lewy body dementia

    Get PDF
    OBJECTIVE: Parkinson disease (PD) is defined by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies and Lewy neurites. It affects multiple cortical and subcortical neuronal populations. The majority of people with PD develop dementia, which is associated with Lewy bodies in neocortex and referred to as Lewy body dementia (LBD). Other neuropathologic changes, including amyloid β (Aβ) and tau accumulation, occur in some LBD cases. We sought to quantify α-syn, Aβ, and tau accumulation in neocortical, limbic, and basal ganglia regions. METHODS: We isolated insoluble protein from fresh frozen postmortem brain tissue samples for eight brains regions from 15 LBD, seven Alzheimer disease (AD), and six control cases. We measured insoluble α-syn, Aβ, and tau with recently developed sandwich ELISAs. RESULTS: We detected a wide range of insoluble α-syn accumulation in LBD cases. The majority had substantial α-syn accumulation in most regions, and dementia severity correlated with neocortical α-syn. However, three cases had low neocortical levels that were indistinguishable from controls. Eight LBD cases had substantial Aβ accumulation, although the mean Aβ level in LBD was lower than in AD. The presence of Aβ was associated with greater α-syn accumulation. Tau accumulation accompanied Aβ in only one LBD case. INTERPRETATION: LBD is associated with insoluble α-syn accumulation in neocortical regions, but the relatively low neocortical levels in some cases suggest that other changes contribute to impaired function, such as loss of neocortical innervation from subcortical regions. The correlation between Aβ and α-syn accumulation suggests a pathophysiologic relationship between these two processes

    VCP suppresses proteopathic seeding in neurons

    Get PDF
    Background: Neuronal uptake and subsequent spread of proteopathic seeds, such as alphaS (alpha-synuclein), Tau, and TDP-43, contribute to neurodegeneration. The cellular machinery participating in this process is poorly understood. One proteinopathy called multisystem proteinopathy (MSP) is associated with dominant mutations in Valosin Containing Protein (VCP). MSP patients have muscle and neuronal degeneration characterized by aggregate pathology that can include alphaS, Tau and TDP-43. Methods: We performed a fluorescent cell sorting based genome-wide CRISPR-Cas9 screen in alphaS biosensors. alphaS and TDP-43 seeding activity under varied conditions was assessed using FRET/Flow biosensor cells or immuno fluorescence for phosphorylated alphaS or TDP-43 in primary cultured neurons. We analyzed in vivo seeding activity by immunostaining for phosphorylated alphaS following intrastriatal injection of alphaS seeds in control or VCP disease mutation carrying mice. Results: One hundred fifty-four genes were identified as suppressors of alphaS seeding. One suppressor, VCP when chemically or genetically inhibited increased alphaS seeding in cells and neurons. This was not due to an increase in alphaS uptake or alphaS protein levels. MSP-VCP mutation expression increased alphaS seeding in cells and neurons. Intrastriatal injection of alphaS preformed fibrils (PFF) into VCP-MSP mutation carrying mice increased phospho alphaS expression as compared to control mice. Cells stably expressing fluorescently tagged TDP-43 C-terminal fragment FRET pairs (TDP-43 biosensors) generate FRET when seeded with TDP-43 PFF but not monomeric TDP-43. VCP inhibition or MSP-VCP mutant expression increases TDP-43 seeding in TDP-43 biosensors. Similarly, treatment of neurons with TDP-43 PFFs generates high molecular weight insoluble phosphorylated TDP-43 after 5days. This TDP-43 seed dependent increase in phosphorylated TDP-43 is further augmented in MSP-VCP mutant expressing neurons. Conclusion: Using an unbiased screen, we identified the multifunctional AAA ATPase VCP as a suppressor of alphaS and TDP-43 aggregate seeding in cells and neurons. VCP facilitates the clearance of damaged lysosomes via lysophagy. We propose that VCPs surveillance of permeabilized endosomes may protect against the proteopathic spread of pathogenic protein aggregates. The spread of distinct aggregate species may dictate the pleiotropic phenotypes and pathologies in VCP associated MSP

    Chalcones and Five-Membered Heterocyclic Isosteres Bind to Alpha Synuclein Fibrils in Vitro

    Get PDF
    A series of chalcone and heterocyclic isosteres, in which the enone moiety was replaced with an isoxazole and pyrazole ring system, was synthesized and their affinities for alpha synuclein (Asyn), amyloid beta (Aβ), and tau fibrils were measured in vitro. The compounds were found to have a modest affinity and selectivity for Asyn versus Aβ fibrils and low affinity for tau fibrils. Insertion of a double bond to increase the extendable surface area resulted in an increase in affinity and improvement in selectivity for Asyn versus Aβ and tau fibrils. The results of this study indicate that compound <b>11</b> is a secondary lead compound for structure–activity relationship studies aimed at identifying a suitable compound for positron emission tomography-imaging studies of insoluble Asyn aggregates in Parkinson’s disease

    Fluselenamyl: A Novel Benzoselenazole Derivative for Pet Detection of Amyloid Plaques (Aβ) in Alzheimer\u27s Disease

    No full text
    Fluselenamyl (5), a novel planar benzoselenazole shows traits desirable of enabling noninvasive imaging of Aβ pathophysiology in vivo; labeling of both diffuse (an earlier manifestation of neuritic plaques) and fibrillar plaques in Alzheimer’s disease (AD) brain sections, and remarkable specificity for mapping Aβ compared with biomarker proteins of other neurodegenerative diseases. Employing AD homogenates, [18F]-9, a PET tracer demonstrates superior (2–10 fold higher) binding affinity than approved FDA tracers, while also indicating binding to high affinity site on Aβ plaques. Pharmacokinetic studies indicate high initial influx of [18F]-9 in normal mice brains accompanied by rapid clearance in the absence of targeted plaques. Following incubation in human serum, [18F]-9 indicates presence of parental compound up to 3h thus indicating its stability. Furthermore, in vitro autoradiography studies of [18F]-9 with AD brain tissue sections and ex vivo autoradiography studies in transgenic mouse brain sections show cortical Aβ binding, and a fair correlation with Aβ immunostaining. Finally, multiphoton- and microPET/CT imaging indicate its ability to penetrate brain and label parenchymal plaques in transgenic mice. Following further validation of its performance in other AD rodent models and nonhuman primates, Fluselenamyl could offer a platform technology for monitoring earliest stages of Aβ pathophysiology in vivo
    corecore