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Aggregates of the RNA-binding protein TDP-43 (TAR DNA-
binding protein) are a hallmark of the overlapping neurode-
generative disorders amyotrophic lateral sclerosis (ALS) and
frontotemporal dementia. The process of TDP-43 aggregation
remains poorly understood, and whether it includes formation
of intermediate complexes is unknown. Here, we analyzed
aggregates derived from purified TDP-43 under semidenatur-
ing conditions, identifying distinct oligomeric complexes at the
initial time points before the formation of large aggregates. We
found that this early oligomerization stage is primarily driven by
TDP-43’s RNA-binding region. Specific binding to GU-rich
RNA strongly inhibited both TDP-43 oligomerization and
aggregation, suggesting that RNA interactions are critical for
maintaining TDP-43 solubility. Moreover, we analyzed TDP-43
liquid–liquid phase separation and detected similar detergent-
resistant oligomers upon maturation of liquid droplets into sol-
id-like fibrils. These results strongly suggest that the oligomers
form during the early steps of TDP-43 misfolding. Importantly,
the ALS-linked TDP-43 mutations A315T and M337V signifi-
cantly accelerate aggregation, rapidly decreasing the monomeric
population and shortening the oligomeric phase. We also show
that aggregates generated from purified TDP-43 seed intracellular
aggregation detected by established TDP-43 pathology markers.
Remarkably, cytoplasmic aggregate seeding was detected earlier
for the A315T and M337V variants and was 50% more widespread
than for WT TDP-43 aggregates. We provide evidence for an initial
step of TDP-43 self-assembly into intermediate oligomeric com-
plexes, whereby these complexes may provide a scaffold for aggre-
gation. This process is altered by ALS-linked mutations, under-
scoring the role of perturbations in TDP-43 homeostasis in protein
aggregation and ALS-FTD pathogenesis.

TDP-43 pathology is a hallmark of amyotrophic lateral scle-
rosis (ALS)3 and frontotemporal dementia (FTD). TDP-43
aggregates accumulate in �98% of ALS and 50% of FTD cases,
also defined as ubiquitin-positive frontotemporal lobar degen-
eration (FTLD-U or FTLD-TDP) (1, 2). In addition, TDP-43
pathology is found in �50% of Alzheimer’s disease (3, 4). The
direct role of TDP-43 in disease is underscored by greater
than 40 ALS-associated dominant missense mutations in the
TDP-43 gene (TARDBP) (5). These cause �3–5 and 1% of
familial and sporadic ALS, respectively. The clinicopathological
characteristics of ALS and FTD associated with mutant and
WT TARDBP are largely indistinguishable, and the mecha-
nisms affected by the mutations linked to pathogenesis have not
been clearly established. Whether disease results from gain of
toxic properties through aggregation, from sequestration of
functional TDP-43 into aggregates (1), or from a combination
of both, it is increasingly evident that loss of TDP-43 homeo-
stasis and aggregation play a critical role in pathogenesis.

TDP-43 is a highly conserved RNA-binding protein and, like
other heterogeneous nuclear ribonucleoproteins (hnRNPs), is
composed of modular domains that mediate single-stranded
RNA/DNA binding and protein interactions (6 –8). Of the two
canonical RNA recognition motifs (RRMs), RRM1 contributes
to the high affinity for RNA/DNA and GU-rich RNA specificity
(6, 7). RRM2 is also highly evolutionarily conserved; however,
its function remains unclear. An additional folded domain is at
the N terminus, which mediates self-assembly as an isolated
domain and presumably of the full-length protein (9 –11). The
C-terminal domain (CTD) is intrinsically disordered and is a
typical low sequence complexity domain, which is highly rep-
resented in RNA-binding proteins (12, 13). This domain medi-
ates self-assembly and interactions with hnRNP complexes
important for RNA processing activity (8, 14, 15), but at the
same time, the CTD drives protein aggregation and toxicity
(16 –18). The CTD is characterized by an abundance of gluta-
mine/asparagine residues, showing great similarity to prion
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domains in yeast proteins, such as that of the archetypal prion
protein Sup35 (13, 19). Significantly, almost all disease-associ-
ated TDP-43 mutations cluster in the CTD (5, 20), strongly
suggesting that these substitutions disrupt normal protein
interactions and promote aggregate formation, driving the dis-
ease state.

The central mechanism in TDP-43 self-assembly and aggre-
gation has been largely unexplored. TDP-43 aggregation assays
using the full-length protein are encumbered by the extreme
aggregation-prone characteristic of TDP-43, which makes pro-
duction of pure soluble protein particularly challenging. Having
recently established methods to generate soluble recombinant
TDP-43 (21), we studied its aggregation to identify the factors
that mediate and alter this process (e.g. ALS-associated muta-
tions) and to gain insight into the structure of aggregates. We
found that TDP-43 aggregates are formed through a biphasic
process that initiates with oligomerization followed by aggrega-
tion into high-molecular-weight polymers. ALS-linked mutants
potently affect aggregation by increasing the rate of assembly. In
addition, we show that the aggregates derived from purified
TDP-43 are capable of seeding intracellular aggregation following
uptake. Our results support a model in which TDP-43 undergoes
self-assembly into oligomeric complexes upon misfolding that act
as templates for large aggregates. This process may be altered in
disease conditions, such as in the presence of patient-linked
mutations.

Results

TDP-43 oligomers assemble at the initial aggregation stage
followed by high molecular weight aggregates

We have successfully developed methods to generate full-
length bacterial recombinant TDP-43 (rTDP-43) to character-
ize TDP-43 interactions (21) (Fig. S1A). We expressed and puri-
fied homogeneous and soluble TDP-43 N-terminally fused to
SUMO (21), which is cleaved off by the SUMO deconjugating
protease Ulp1 (Fig. S1B). Using this protein, we analyzed
TDP-43 self-assembly and aggregation. Prior to carrying out
the aggregation assays, we ensured that purified protein prep-
arations did not include preformed aggregates using high-
speed ultracentrifugation and by routinely measuring protein
activity in RNA-binding assays (Fig. S1C). The binding affinity
for the TDP-43–A(GU)6 RNA interaction was determined with
our previously established fluorescence-based method (21).
This accurately measures the apparent dissociation constant
for A(GU)6 (typically Kd, app � 2.3 � 0.7 nM) and also provides
an estimate of the active protein concentration. By measuring
these parameters and assuming that active protein concentra-
tion is equal to the concentration of soluble protein, we deter-
mined the purity of our protein preparations. Our aggregation
assays consisted of analyzing rTDP-43 complexes after brief
shaking followed by incubation at room temperature (�22 °C).
To detect the assembled complexes, we adapted a method
widely used for the characterization of yeast prion aggregates
(22–24), based on the resolution of soluble and large aggregate
complexes by semidenaturing detergent-agarose electrophore-
sis (SDD-AGE). SDD-AGE generates large pores allowing the
detection of large protein complexes that are resistant to SDS

detergent, typically ranging from 0.1 to 2% (24). This method
has also been used to detect neurodegeneration-associated
aggregates, such as Tau (25), and in a limited number of studies
to analyze TDP-43 pathology from patient tissue and cultured
cells (26, 27). We analyzed rTDP-43 aggregates formed over
time and obtained the resolution of rTDP-43 monomers and
large polymers, which increased in size (Fig. 1A). In addition to
the expected high-molecular-weight aggregates, we observed
an oligomeric pattern of assembly at initial time points. These
initial complexes (Figs. 1A, days 1– 4, arrows) were replaced by
larger, heterogeneous species at longer incubation times (Fig.
1A, days 8 –15). The later-day large complexes resembled
aggregates formed by prion proteins and other protein aggre-
gates analyzed with this method (22, 25, 28). Addition of poly-
ethylene glycol, used as a crowding agent, accelerated the
aggregation rate, increasing the formation of the larger com-
plexes (Fig. S2A). Fig. 1 shows complexes formed by SUMO-
tagged TDP-43, and removal of SUMO had no significant effect
in the size of the aggregates or in the formation of oligomers
(Fig. S2B). In the absence of SUMO, the assays were initiated
immediately after removal of the tag because the cleaved

Figure 1. Detection of TDP-43 oligomers during the initial steps of aggre-
gation. SDD-AGE and immunoblotting analysis to detect TDP-43 aggregates
using purified protein, cells treated with proteotoxic stress, and FTD patient
samples. A, aggregation of full-length purified TDP-43 (rTDP-43) was trig-
gered by brief shaking (2 �M in reaction buffer), and samples were analyzed as
a function of time. Day 0 was collected immediately after triggering aggrega-
tion by shaking. Arrows point to the initial oligomeric species. B, lysates from
HEK293 cells treated with sodium arsenite, the ubiquitin proteasome system
inhibitor MG132 (10 �M, 4 h), heat shock (43 °C for 30 min), and nontreated
control. Either 300 or 100 �g of total protein was loaded. C, the sarkosyl-
insoluble fraction from FTD and control (lane C) brain samples analyzed by
SDD-AGE. These were compared with day 0 and day 10 rTDP-43 aggregates
prepared in the same buffer conditions as the brain samples. All blots were
probed with TDP-43 antibody and are representative of more than three indi-
vidual experiments.

Oligomeric species are intermediates in TDP-43 aggregation
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TDP-43 could not be stored without significant protein loss.
Therefore, we used SUMO-tagged protein in our experiments,
unless noted.

We compared aggregates from purified TDP-43 to cell-de-
rived aggregates and insoluble TDP-43 fractions from FTD
brain tissue samples to validate our methods for aggregate char-
acterization and to assess the physiological relevance of the
rTDP-43complexes detected using SDD-AGE. Lysates from
human embryonic kidney (HEK293) cells under conditions
known to promote TDP-43 aggregation, oxidative stress treat-
ment with sodium arsenite (29), showed high-molecular-
weight complexes similar to the later-day rTDP-43 aggregates
(Fig. 1B). They were absent in nontreated control cell lysates.
Milder proteotoxic conditions, such as inhibition of the ubiq-
uitin proteasome system with 10 �M MG132 or 30 min of heat
shock (21, 30, 31), increased the presence of a distinct high-
molecular-weight complex migrating above monomeric TDP-
43. The physiological oligomerization of TDP-43 into higher
order complexes in cells, ranging in size from monomers to
much larger macromolecular assemblies has been previously
reported (9, 27). In our analysis, TDP-43 from control-treated
lysates migrated as monomers, indicating that these complexes
were reversible and destroyed in the presence of detergent. On
the other hand, distinct higher order complexes detected by
SDD-AGE upon treatment with MG132 and heat shock sug-
gested that misfolding under these conditions promoted strong
interactions resistant to semidenaturing agents. Based on these
findings, we propose that the early-day oligomers during the
initial rTDP-43 aggregation stage are the counterparts of mis-
folded complexes in cells. These species may be detected under
specific conditions, resulting in loss of proteostasis and perhaps
even in physiological complexes, such as the recently described
TDP-43 myo-granules found in skeletal muscle (32). Next, we
analyzed postmortem human brain tissue from control and
FTD cases following sequential extraction of gray matter dis-
sected from frontal cortex samples (Fig. 1C). We used the
sarkosyl insoluble fraction for our analyses as described under
“Experimental procedures” (33). Our results showed that the
levels of TDP-43 aggregates in FTD samples increased com-
pared with control, consistent with a previous report (26). In
addition, the migration pattern of TDP-43 in control tissue was
different from the disease cases. We included 0- and 10-day
rTDP-43 aggregates in the same solution conditions as brain
tissue for comparison (Fig. 1C). This showed that migration of
later-day rTDP-43 aggregates was similar to TDP-43 com-
plexes from FTD but not from control tissue. Collectively, these
results suggest that our methods may be used to detect and
analyze aggregate species generated from the purified protein,
which show conformational and biochemical similarities to cell
and patient-derived TDP-43 inclusions.

We investigated whether TDP-43 complexes could be de-
tected without triggering aggregation by shaking and found
that 10 min of incubation of soluble protein at increasing tem-
peratures enhanced the formation of oligomers as seen by SDD-
AGE (Fig. 2A). The left panel of Fig. 2A shows aggregates
formed at 0, 3, 5, and 10 days after shaking, for comparison. The
TDP-43 complexes, which increase at higher temperatures, are
similar to the intermediate species in the aggregation assay. To

estimate the oligomeric state of the early TDP-43 complexes,
we performed cross-linking experiments under reducing con-
ditions (Fig. 2B). These complexes were analyzed by standard
denaturing SDS-PAGE after the addition of �-ME (100 mM). As
control, non– cross-linked samples were analyzed in the pres-
ence and absence of �-ME. Immunoblots showed cross-linked
complexes corresponding to tetramers at day 3, according to
the estimated molecular weight. This complex was not detected
in non– cross-linked samples independent of �-ME treatment.
Thus, we propose that initial rTDP-43 self-assembly favors
tetrameric complexes formed through interactions not medi-
ated by disulfide bonds.

Figure 2. TDP-43 oligomers increase at higher temperatures and are not
mediated by covalent disulfide bones. A, SDD-AGE/immunoblotting anal-
ysis of aggregates formed at 0, 3, 5, and 10 days compared with TDP-43 com-
plexes formed upon brief incubation at increasing temperatures without
shaking (2 �M TDP-43 in reaction buffer at 20 – 42 °C for 10 min). B, days 0 and
3 TDP-43 complexes were chemically cross-linked (X-link) in the presence and
absence of 250 mM �-ME). Samples were analyzed by SDS-PAGE and immu-
noblot. The estimated number of TDP-43 molecules cross-linked, and the
molecular mass markers (kDa) are shown. C, SDD-AGE analysis of rTDP-43
aggregates under reducing conditions, TCEP was added throughout the puri-
fication and supplemented at day 5 (reducing). Arrows point to the time of
addition of extra TCEP. In nonreducing conditions, TDP-43 was purified in the
presence of the short-lived reducing agent �-ME, and no additional reducing
agents were added during the assay. D, day 3, 7, and 14 aggregates prepared
in the presence of TCEP and treated with high concentrations of reducing
agents (250 mM �-ME, DTT, and TCEP). A longer gel was used to increase
oligomer separation. All blots were probed with TDP-43 antibody and are
representative of more than three individual experiments.

Oligomeric species are intermediates in TDP-43 aggregation
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Thioflavin reactivity with TDP-43 aggregates, including
samples derived from patient brain, remains controversial (34 –
37). The fluorescence of this compound increases upon binding
to amyloid structures that accumulate cross-� sheets. We
tested binding of rTDP-43 and cellular aggregates to thioflavin
T (ThioT) and S (ThioS). ThioT was incubated with rTDP43
monomer for 2 h at room temperature to allow formation of
early TDP43 aggregates. We did not observe any significant
binding of ThioT to early rTDP43 aggregates under low-salt
aggregate-forming conditions. In contrast, the same concentra-
tion of �-synuclein fibrils showed a concentration-dependent
increase in ThioT fluorescence signal, consistent with previous
findings (38) (Fig. S3A). Similar results were obtained upon
ThioT incubation with 2- and 10-day rTDP-43 aggregates (data
not shown). In addition, cellular aggregates, positive for the
pSer-409/410 marker of TDP-43 pathology, were not detected
by ThioT or ThioS (Fig. S3B). These results are in agreement
with previous data showing the lack of ThioT binding to rTDP-
43, especially when compared with established amyloid aggre-
gates, such as A-� and Sup35 (16, 37). Recently, Vogler et al.
(32) reported ThioT reactivity with TDP-43 complexes in myo-
granules from the muscle of a Vcp mutant mouse model of
multisystem proteinopathy and inclusion body myopathy,
which is characterized by TDP-43 aggregation. The discrep-
ancy in the reports from various studies may be caused by dif-
ferences in TDP-43 complex/aggregate structures formed
under the various conditions. Some isoforms may adopt
cross-� sheet structure, which may be absent or buried in oth-
ers. Consistent with this idea, isolated C-terminal peptides
show ThioT/S binding upon fibrillization (27, 39 – 42).

Early TDP-43 complexes are not mediated by disulfide bonds

To further understand whether the TDP-43 complexes
detected by SDD-AGE were mediated by covalent interactions,
we analyzed their sensitivity to reducing agents. The re-
ducing agent Tris(2-carboxyethyl)phosphine (TCEP) was used
throughout rTDP-43 purification and during the aggregation
assays. In Fig. 2C we added supplementary TCEP on day 5 to
ensure that the samples remained under reducing conditions.
This was compared with a “nonreducing” assay, whereby aggre-
gates were generated using rTDP-43 purified in the presence of
�-ME, a less stable reducing agent compared with TCEP. No
additional reducing agent was used in the aggregation assay
(nonreducing; Fig. 2C). Nonreducing conditions generated
large heterogeneous aggregates immediately, beginning at the
initial time point (day 0). From these experiments we observed
that the initial and intermediate aggregates were detected in the
presence of TCEP; however, the larger aggregates decreased
significantly under these conditions (i.e. day 10 in reducing and
nonreducing samples). To further confirm our results, we
treated aggregates formed at days 3, 7, and 14 with high con-
centrations of reducing agents (TCEP, �-ME, and DTT, 250
mM) (Fig. 2D). This did not significantly affect the initial com-
plexes but greatly decreased formation of the largest aggregates
at later time points. Based on these collective observations we
propose that initial complexes that are detected as ordered
molecular assemblies by SDD-AGE are partially detergent-re-
sistant oligomers and are not mediated by covalent bonds. On

the other hand, the higher-molecular-weight heterogeneous
aggregates form through disulfide interactions. This is consis-
tent with the effect of oxidative stress in promoting TDP-43
aggregation in cells and with the previous identification of intra
and intermolecular TDP-43 Cys interactions in patient tissue
(43). Our results and this previous work highlight the relevance
of disulfide bond formation on TDP-43 pathology.

Role of liquid–liquid phase transitions in oligomer formation

RNA-binding proteins associated with ALS/FTD, including
TDP-43, FUS, TIA-1, Matrin 3, and hnRNP A1 undergo a pro-
cess of condensation through liquid–liquid phase separation
(LLPS) according to in vitro and in cell-based evidence (44).
This activity mediates the formation of membraneless RNA-
protein rich organelles in the nuclear and cytoplasmic cellular
compartments (e.g. nucleoli and stress granules) (12, 45– 47).
Liquid droplets assembled through LLPS “mature” over time
into solid-like complexes such as fibrils. Importantly, disease-
linked conditions are proposed to disrupt LLPS and RNA gran-
ule assembly, thereby promoting aggregation and neurotoxicity
in ALS and FTD (48 –50). Therefore, self-assembly of these ALS
and FTD-associated proteins is central to their physiological
function but also plays a major role in aggregate formation. The
mechanisms connecting these processes of LLPS and aggrega-
tion remain poorly characterized.

We asked whether the oligomeric complexes seen at the ini-
tial time points in the TDP-43 aggregation assay represent
assemblies formed by LLPS. Microscope visualization of fluo-
rescently labeled rTDP-43 in low salt (25–50 mM NaCl) showed
immediate phase separation and formation of droplets similar
to those recently reported by Maharana et al. (54) (Fig. 3A).
Droplet formation was salt-dependent because the number of

Figure 3. Maturation of TDP-43 liquid droplets is detected as oligomeri-
zation by SDD-AGE. A, representative microscope images of fluorescently
labeled TDP-43 (0.5 �M) LLPS. Liquid droplets formed in low salt (50 mM NaCl)
but not in high salt (250 mM NaCl). Incubation of samples for 30 min or longer
at 22 °C resulted in fibril-like structures. Scale bar, 2 �m. B, the number of
droplets formed at 50 and 250 mM NaCl were quantified by ImageJ (n � 3,
S.E.). C, samples in low and high salt conditions analyzed by SDD-AGE/immu-
noblot and compared with 0 and 10 day aggregates (Aggr.). LLPS samples at
low and high salt analyzed after prolonged incubation (2 h). Microscope
images and blots probed with TDP-43 antibody and are representative of
more than three individual experiments.

Oligomeric species are intermediates in TDP-43 aggregation
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droplets was dramatically reduced at higher salt concentrations
(250 mM), consistent with previous studies (Fig. 3B) (11, 47).
Furthermore, phase separation was reversed by increasing the
salt concentration to 250 mM, indicating that the observed
complexes were not irreversible aggregates (data not shown).
Interestingly, extending the incubation time of the sample
beyond 30 min resulted in the growth of fibrillar structures as
seen by fluorescence microscopy (Fig. 3A). We analyzed sam-
ples corresponding to those used for droplet formation at low
and high salt and at longer incubation times by SDD-AGE (Fig.
3C). For control, we loaded samples from the aggregation assay
days 0 and 10 (Figs. 1A and 2A). We found no macromolecular
complexes by SDD-AGE in droplet conditions (25–50 mM

NaCl) or at high salt (250 mM). However, incubation of the
sample for 30 min to 2 h, parallel to the conditions that resulted
in liquid droplet maturation, showed an increase in the oligo-
meric species similar to the pattern detected at the initial time
points of the aggregation assay (Fig. 3B). These observations
suggest that maturation of droplets into assemblies with solid-
like properties may be detected by SDD-AGE and provide fur-
ther evidence that the detergent-resistant oligomers form as
the initial steps of misfolding and aggregation.

Specific binding to RNA rich in GU repeats decreases TDP-43
oligomer formation and aggregation

RNA is one of the principal physiological partners of TDP-43
mediating protein binding to hundreds of RNA transcripts.
Genome-wide studies have shown a strong preference of
TDP-43 for GU-rich sequences, an interaction of tight binding
affinity (21, 51, 52). We tested whether RNA modulates the
aggregation of rTDP-43 using our assay and focused on the
effect of GU repeats. For these experiments we used 2�
O-methyl, phosphorothioate-modified RNA to reduce its deg-
radation during the assay, at 2-fold molar excess of RNA to
protein. We found that addition of (GU)6 repeats strongly
inhibited both the initial oligomerization and large aggregate
formation of rTDP-43, compared with control (Fig. 4A). Signif-
icantly, (GU)6 maintained higher levels of the monomer
throughout the experiment. This was not observed when the
protein was incubated with RNA composed of (CA)6 repeats.

To further test the role of specific RNA-binding interactions,
we carried out similar aggregation assays with the RNA
binding– deficient mutant F147L/F149L. Phe-147 and Phe-149
in the RNP1 motif of RRM1 make specific contacts with U and
G bases, respectively (53), and double substitution of these
amino acid residues (F147L/F149L) drastically decreases RNA
binding (6, 21). We found that F147L/F149L oligomerization
and aggregation resembles WT rTDP-43 but is not significantly
affected by (GU)6 RNA (Fig. 4B). Together, these experiments
provide strong evidence that specific RNA binding stabilizes
TDP-43 and prevents aggregation. This suggests that TDP-43
binding to target RNA transcripts, which are predominantly
GU-rich sequences plays a major role in maintaining cellular
TDP-43 homeostasis. Our results are in agreement with recent
studies showing that RNA modulates LLPS and aggregation of
RNA-binding proteins, proposing that RNA acts as a chaperone
for this class of proteins (54).

Contribution of TDP-43 domains on protein assembly

To determine how each of the modular domains contributes
to the two stages of assembly, we compared oligomer formation
and aggregation of rTDP-43 deletion mutants (Fig. 5A). SDD-
AGE analysis of the complexes showed that removal of the
N-terminal domain (�N) decreased the formation of the initial
oligomers and increased the formation of the large aggregates
relative to the full-length protein (Fig. 5B). Conversely, deletion
of the C-terminal low complexity region (�C) maintained the
pattern of oligomerization and reduced the levels of large
aggregates, consistent with its prion-like function. Removal of
both N-and C-terminal domains (RRM1–2) triggered the for-
mation of multiple oligomeric complexes starting at day 0 with
little accumulation of high-molecular-weight species even after
prolonged growth time. These results were supported by solu-
bility assays in which protein samples (days 0 and 5 of the
aggregation assay) were fractionated into RIPA-soluble and -in-
soluble fractions (Fig. 5C). The ratio of urea-soluble to RIPA-
soluble protein was similar for all constructs at the initial time
point (day 0). As expected, the later time point showed a signif-
icant increase of insoluble protein for full-length and �N (day
5) (Fig. 5, C and D). Deletion of the C-terminal low complexity
domain reduced insoluble aggregates 6-fold compared with
full-length TDP-43. The RRM1–2 fragment showed the highest
solubility with little increase in the insoluble fraction over time
(Fig. 5, C and D). These results suggest a strong contribution of
RRM1–2 in TDP-43 oligomerization and that adding only the
C-terminal domain in the absence of the entire N-terminal
region accelerates large aggregate accumulation. This is consis-
tent with the strong aggregation-prone characteristic of the
C-tail (16 –18).

Next, we investigated the structural changes associated with
the different stages of TDP-43 aggregation seen by SDD-AGE
using atomic force microscopy (AFM) and immuno-EM. Using
these techniques, we studied both full-length TDP-43 and trun-
cation mutants to compare the structure of large aggregates
versus oligomeric patterns. AFM experiments showed that
RRM1–2 does not form visible particles at day 0, whereas the
full-length protein revealed small round oligomeric structures
without incubation (Fig. 6A). After 1 day, the full-length formed

Figure 4. Specific binding of GU-rich RNA prevents TDP-43 aggregation.
SDD-AGE/immunoblot analyses of TDP-43 aggregation over time in the pres-
ence and absence of 2�-O-methyl, phosphorothiorate-modified RNA (4 �M

RNA and 2 �M protein). A, RNA composed of (GU)6, (CA)6 repeats, or control
was added to rTDP-43 prior to triggering aggregation. B, aggregation of the
RNA binding– deficient mutant F147L/F149L over time in the presence and
absence of (GU)6. All four blots were probed with TDP-43 antibody and are
representative of more than individual experiments.

Oligomeric species are intermediates in TDP-43 aggregation
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larger density oligomers compared with RRM1–2. Nascent
fibrillar structures of full-length rTDP-43 were observed after 2
days of incubation but were absent in RRM1–2 (Fig. 6A). Sim-
ilarly, EM analysis showed fibrils of full-length TDP-43 at day 2,
which grew in size after 7 and 10 days of incubation (Fig. 6B).
This is consistent with previously obtained complexes formed
by full-length TDP-43 and C-terminal domain protein frag-
ments (27, 55). In contrast, aggregates of RRM1–2 and �C frag-
ments appeared as smaller structures. Unlike full-length and
�N aggregates, RRM1–2 and �C fragments failed to grow into
large fibril-like assemblies by days 7 and 10. This is consistent
with the assembly pattern of full-length and mutant rTDP-43
seen by SDD-AGE (Fig. 5B). Binding of anti-TDP-43 immuno-
gold particles confirmed that the assemblies were formed by the
respective proteins. Collectively, these results strongly suggest
that the initial assembly during TDP-43 aggregation, which we
detected as an ordered oligomeric pattern by SDD-AGE, are

structurally different from later-day aggregates. The larger
aggregates form fibril-like structures similar to those previously
observed for full-length TDP-43 using similar microscopy
methods (16, 55).

To further dissect the contribution of TDP-43 domains dur-
ing the different stages of aggregation, we studied two addi-
tional mutations (Fig. 7A). We generated a mutant harboring
double residue substitutions, Y4R/E17R, to address the role of
N-terminally mediated assembly without deleting the entire
N-terminal region. These mutations do not affect folding but
disrupt N-terminal domain self-assembly in vitro and splicing
regulatory function in cells (11). To confirm that Y4R/E17R
disrupts self-assembly through the N-terminal domain, we
studied its LLPS behavior. Compared with WT rTDP-43, Y4R/
E17R showed a markedly reduced ability to form liquid droplets
(Fig. 7B), in agreement with previous studies showing that
TDP-43 LLPS decreases upon disruption of N-terminal
domain-mediated association (11). The aggregation assays
showed that Y4R/E17R did not affect oligomerization (Fig. 7C),
suggesting that N-terminally mediated assembly does not play a

Figure 5. Role of TDP-43 protein domains in oligomerization and aggre-
gate formation. A, schematic representation of TDP-43 deletion constructs
devoid of N terminus (�N), C terminus (�C), or both (RRM1–2) consisting of
the amino acid residues shown. B, aggregates formed by these protein frag-
ments were analyzed by SDD-AGE/immunoblotting. Samples from Days 0, 3,
5, and 10 were selected for comparison with full-length TDP-43. C, SDS-PAGE
and immunoblotting of full-length rTDP-43 (FL) and deletion fragments frac-
tionated into RIPA-soluble and -insoluble fractions. Insoluble pellets were
resuspended in urea at days 0 and 5 of the aggregation assay. Equal volumes
of starting lysate (Total) and RIPA-soluble fraction were loaded. Urea-soluble
pellet represents 5-fold concentrated sample relative to RIPA-soluble frac-
tion. D, RIPA and urea-soluble TDP-43 was quantified to compare the levels
aggregation at the initial time point (day 0) and day 5 of the aggregation
assay. Band intensity was quantified by ImageJ (n � 3, S.D.). The statistical
significance (*, p � 0.025) comparing deletion fragments to full-length rTDP-
43. All blots were probed with TDP-43 antibody and are representative of
more than three individual experiments.

Figure 6. Oligomers are conformationally distinct from the large late-
stage aggregates. Shown are structural analyses of full-length TDP-43 and
deletion constructs during early (0, 1, and 2 days) and late assembly stages (7
and 10 days). A, representative atomic force microscopy image of full-length
and RRM1–2 complexes at the earliest time points. Scale bar, 400 nm. Z color
bar, 0 –15 nm. B, immuno-EM of full-length, �N, �C, and RRM1–2 aggregates
using TDP-43 antibody-coated gold particles. Scale bar, 100 nm. Arrowheads
point to small complexes that are significantly smaller than the large fibril-like
structures in full-length and �N day 7 and 10 samples.
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role in mediating the initial phase of TDP-43 aggregation. To
address the role of RRM1–2 in the context of the full-length
protein, we replaced the RNA-binding domains with mono-
meric EGFP (N-GFP-C) (Fig. 7A). We analyzed N-GFP-C
aggregation focusing on the early days of the assay and found
almost-complete inhibition of oligomerization with the chi-
mera, compared with WT (Fig. 7D). Even at later time points,
whereas WT rTDP-43 accumulated larger aggregates, N-GFP-C
remained mostly monomeric. This provides strong evidence for
the central role of RRM1 and 2 in the initial oligomerization during
TDP-43 misfolding and confirms the results obtained with the
RRM1–2 fragment (Fig. 5B). Moreover, the data showed that dis-
ruption of oligomer formation greatly delays aggregation in our
assays. It is possible that inhibition of large aggregates in N-GFP-C
were partially due to the loss of disulfide bonds and would be con-
sistent with our results in Fig. 2C. The RRM1–2 region contains
four of the six Cys residues in full-length TDP-43. This would
suggest that oligomerization at the initial phase of TDP-43 aggre-
gation creates a structural scaffold for high-molecular-weight
aggregates and that this also depends on covalent disulfide bond
formation. This model may be tested by analyzing the aggregation
of mutants substituting RRM1–2 Cys residues to examine how
these affect oligomer and large aggregate assembly. It is also pos-
sible that during misfolding, TDP-43 oligomerization and aggre-
gation represent two alternative pathways that follow different
assembly kinetics. This may be tested with additional TDP-43 vari-
ants that specifically stabilize or block oligomeric complexes.

Disease-linked mutations increase the assembly and
aggregation of TDP-43 in vitro

The pathogenesis of ALS-causative mutations in TDP-43, for
the most part, remains to be elucidated. Understanding how
these mutations affect TDP-43 homeostasis and function is
critical in uncovering the disease mechanisms of ALS and FTD.
The clinicopathological features or TDP-43 lesions are similar
in patients with or without TDP-43 mutations. This suggests
that alternative methods are needed to understand the differ-
ences between WT and mutant TDP-43 at the molecular level.
To test whether our assay may be used to determine how these
mutations affect the aggregation process, we studied two sin-
gle-site substitutions: A315T and M337V (Fig. 8A). Both muta-
tions are highly associated with disease and previously reported
to increase aggregation in vitro and promote neurotoxicity in
animal models (5, 27, 56, 57). We performed aggregation assays
with A315T and M337V and analyzed the complexes formed
over time by SDD-AGE (Fig. 8B). We observed that both muta-
tions potently impacted the rate of aggregation as seen by sig-
nificantly accelerated oligomer formation at the earliest time
point (day 0), which was mostly absent in WT. The oligomer
pattern typical of days 3 and 5 in WT TDP-43 was substituted
by the larger aggregates in the mutants, particularly in the case
of M337V. We also analyzed the initial soluble samples by SDD-

Figure 7. Full-length rTDP-43 oligomerization at the initial aggregation
stage requires RRM1 and 2 but not N-terminal domain-driven assembly.
A, schematic representation of the chimera construct replacing RRM1–2 with
mEGFP (N-GFP-C) and double residue substitution at the N terminus, Y4R/
E17R. B, representative microscope images of fluorescently labeled rTDP-43
comparing liquid droplet formation of WT and Y4R/E17R. Scale bar, 2 �m. C,
SDD-AGE/immunoblot analyses of WT rTDP-43 and Y4R/E17R aggregates col-
lected from days 0 –10. D, WT rTDP-43 and N-GFP-C samples collected during
the initial aggregation phase (days 0 – 6) analyzed by SDD-AGE. Immunoblots
were probed with TDP-43 antibody and are representative of more than four
individual experiments.

Figure 8. ALS mutations accelerate the rate of TDP-43 aggregation into
high-molecular-weight aggregates. A, ALS-linked mutations A315T and
M337V in the C-terminal domain of TDP-43 were analyzed by SDD-AGE/im-
munoblot. B, samples were shaken and collected immediately after (day 0)
and after 3, 5, and 10 days. C, WT and mutant soluble protein samples col-
lected prior to triggering aggregation. The blots were probed with TDP-43
antibody and are representative of more than three individual experiments.
D, monomer, corresponding to the fastest migrating band, was quantified by
ImageJ at the different time points for WT, A315T, and M337V. Curves were
generated by fitting data points to an exponential formula in GraphPad Prism
(n � 3, S.E.).
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AGE to examine whether or not oligomers were already present
before triggering aggregation. Fig. 8C shows that oligomers or
aggregates are absent from the starting WT and mutant sam-
ples. Quantifying aggregation rates from the loss of monomer
proteinatdifferenttimepointsshowedthatalthoughWTmono-
mer decreased linearly as a function of time, A315T and M337V
monomers decreased at a significantly faster exponential rate
(Fig. 8D). This, particularly the effect of M337V, is in strong
agreement with previous observations that these substitutions
increase amyloid formation of the isolated disordered C-tail
(58, 59) and full-length protein (16) and disrupt phase separa-
tion in cell models (60 –62). Our results on the macromolecular
assembly of A315T and M337V may reflect distinct structures
formed in the presence of the substitutions that have faster
rates of complex association. Alternatively, these results may
suggest that disease mutations decrease the dissociation of
TDP-43 molecules making more stable complexes that result in
stable fibrils or aggregates.

rTDP-43 aggregates seed and propagate intracellularly and
this is enhanced by ALS mutations

Propagation of aggregates through prion-like transcellular
transmission has been documented for a number of proteins
associated with neurodegeneration, including TDP-43 (63, 64).
Previous studies showed TDP-43 seeding in cells; however,
these assays used TDP-43 protein fragments, and the resulting
intracellular aggregates were not detected by established mark-
ers of TDP-43 pathology, i.e. phosphorylation at Ser-409/410
(65–67). To investigate the aggregate seeding function of our
rTDP-43 aggregates in cells, we generated a stable cell line to
detect cytoplasmic aggregates in a reproducible and sensitive
assay. A single copy of mCherry-tagged TDP-43 was stably inte-
grated in HEK293 cells for tetracycline-induced expression
(HEK-TDP-43NLS) (Fig. S4). This facilitated visualization of
TDP-43 and prevented high and nonhomogeneous levels of
transgene overexpression that could disrupt protein homeosta-
sis. This system offers an advantage to studying TDP-43 aggre-
gation relative to transient transfection, which often causes
overexpression of the protein. We expressed full-length TDP-
43NLS harboring alanine substitutions disrupting the nuclear
localization signal (NLS) and increasing cytoplasmic TDP-43,
as previously observed (68, 69) (Fig. S4, A and B). Expression of
a similar TDP-43 NLS-mutant causes neurotoxicity accompa-
nied by pathological inclusions in brain and spinal cord in mice
(70). Our HEK-TDP-43NLS cells expressed soluble TDP-43NLS

under control conditions but could be induced to form cyto-
plasmic aggregates readily detected by microscopy after addi-
tion of proteotoxic agents (e.g. MG132 and sodium arsenite)
(Fig. S4, B and E). We confirmed that the cytoplasmic inclu-
sions triggered by proteotoxic stress were recognized by an
antibody recognizing phosphorylated Ser-409/410 (Fig. S4, C
and D).

We used lipofection-mediated transduction of rTDP-43
aggregates in HEK-TDP-43NLS and observed protein internal-
ization with fluorescently labeled rTDP-43. The protein was
labeled with Oregon Green before initiating the aggregation
assays. rTDP-43 samples collected shortly after triggering
aggregation (day 0) (Fig. 1A) were delivered into cultured HEK-

TDP-43NLS. The cells were trypsinized and replated 24 h post-
transfection to remove rTDP-43 from the medium and from
association with the extracellular membrane. We observed
internalization of labeled rTDP-43 48 h post-transfection (Fig.
9A). Aggregate formation of mCherry-TDP-43NLS was moni-
tored for several days. We observed a significant increase in
cellular TDP-43 aggregation after 6 days of treatment, as seen
by formation of large mCherry cytoplasmic foci (Fig. 9A). The
mCherry-positive inclusions colocalized with the Oregon
Green signal, suggesting the nucleation of de novo cellular
aggregation by the rTDP-43 internalized aggregates. Cells
treated with rTDP-43 aggregates showed a significant 2-fold
increase in cells positive for mCherry aggregates compared
with those treated with soluble rTDP-43 or no protein control
(Fig. 9B). During our initial experiments, we tested seeding
activity using rTDP-43 aggregates collected at various time
points (0, 3 and 10 day aggregates). We did not find significant
differences in the levels of rTDP-43 internalization or aggregate
seeding between rTDP-43 aggregates collected at different time

Figure 9. Intracellular TDP-43 aggregate seeding increases with disease-
linked mutations but is reduced upon deletion of both N- and C-terminal
domains. A, Oregon Green–labeled rTDP-43 aggregates, corresponding to day 5
in the aggregation assay, transfected in mCherry-TDP-43 expressing cells (HEK-
TDP-43NLS). The cells were trypsinized 24 h post-transfection, and rTDP-43 aggre-
gate internalization was monitored 48 h post-transfection (top panel). Arrowhead
points to colocalization of Green aggregates with mCherry-TDP-43 aggregates in
the cytoplasm. Bottom row, mCherry-tagged TDP-43NLS cellular aggregates visu-
alized by microscopy at higher magnification after 6 days of treatment. Overlay
shows additional merging with DAPI. Scale bar, 10 �m. B, the percentage of HEK-
TDP-43NLS cells showing cytoplasmic aggregates (mCherry-positive) was quanti-
fied after 48 h and 6 days of transfection with rTDP-43, including WT rTDP-43
aggregates (WT) and ALS mutant rTDP-43 aggregates (A315T and M337V). No
protein and soluble WT rTDP-43 transfection was used as control. Statistical sig-
nificance was calculated for control versus WT, A315T, and M337V at 48 h and 6
days (black asterisk); WT versus A315T and M337V at 48 h and 6 days (red asterisk)
(�200 cells/sample counted in n � 3, S.D., GraphPad Prism two-tailed t test anal-
ysis; black asterisk and red asterisk, p � 0.04). C, percentage of HEK-TDP-43NLS cells
with mCherry-positive cytoplasmic aggregates quantified 6 days after transfec-
tion with full-length rTDP-43 and truncation mutant �N, �C, and RRM1–2 aggre-
gates. Statistical significance calculated with�200 cells/sample, n �3, S.D., using
GraphPad Prism two-tailed t test analysis (two black asterisks, p � 0.004).
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points (data not shown). The cellular aggregates were also pos-
itive for pSer-409/410 (Fig. S5, A and B), suggesting that the
inclusions share structural and mechanistic similarities with
those formed in disease. The relevance of our cellular reporter
to study TDP-43 aggregate seeding is further supported by
recent work using a similar HEK293 GFP-tagged TDP-43NLS

stable cell line (71). FTD-derived extracts positive for TDP-43
pathology showed cytoplasmic aggregate seeding in these cells
and were also capable of propagating TDP-43 pathology in an in
vivo model upon intracerebral injection in mice.

Next, we analyzed whether the ALS/FTD-linked mutations
altered aggregate formation in cells as seen in our in vitro
assays. Transduction of HEK-TDP-43NLS with A315T and
M337V rTDP-43 day 0 aggregates showed a significant 2-fold
increase in mCherry-positive inclusions already at 48 h (Fig.
9B), whereas WT rTDP-43 aggregates did not show a signifi-
cant difference compared with control at this time point. The
effect of the disease-associated mutations was even greater after
6 days, showing a 3-fold increase in mCherry-TDP-43NLS

aggregates compared with control (Fig. 9B). A315T and M337V
also caused significantly greater intracellular aggregation com-
pared with WT, 50 and 67% increase, respectively, 6 days post-
transfection. Of note, cellular internalization of rTDP-43
aggregates was similar for WT and mutant, and �40% of cells
showed cytoplasmic labeled rTDP-43. These results strongly
suggest that the mutants do not alter cellular uptake but are
more efficient at seeding and propagating relative to WT. This
is in agreement with the increased rate of large aggregate
assembly seen by SDD-AGE in vitro (Fig. 8B).

Similar experiments were performed with aggregates derived
from rTDP-43 truncated mutants, �N, �C, and RRM1–2 to
examine the contribution of oligomers versus large aggregates
in cellular aggregate seeding. Deletion of both N- and C-termi-
nal domains showed significantly reduced seeding function
compared with WT. The proportion of cytoplasmic inclusions
at 6 days post-transduction was similar (14%) in cells treated
with RRM1–2 aggregates, soluble rTDP-43, or no protein con-
trol (Fig. 9, B and C). The seeding function of �N and �C were
not statistically significantly different from full-length aggre-
gates but showed increased and reduced mCherry-positive
aggregates, respectively. Collectively, these results suggest that
the oligomeric intermediates are not sufficient to nucleate cyto-
plasmic TDP-43 aggregation in the absence of the N terminus
and particularly, upon deletion of the C-terminal region. Addi-
tional studies are needed to determine whether preventing
oligomerization in the context of full-length TDP-43 disrupts
aggregate seeding function.

Discussion

Our studies shed new light into the molecular steps that lead
to TDP-43 aggregation and highlight methods to study the fac-
tors that control TDP-43 proteostasis and/or trigger protein
misfolding. We also report a previously unappreciated role for
disease-associated mutations on the aggregation mechanisms,
providing important clues on how these mutations lead to
pathology.

The use of SDD-AGE to analyze rTDP-43 aggregates pro-
vided the first evidence of a defined oligomeric pattern that

precedes formation of TDP-43 high-molecular-weight aggre-
gates (Figs. 1A and 2A). These intermediates may not be
observed by other methods used to monitor aggregation, such
as turbidity and other spectroscopic techniques. We confirmed
the differences in the conformation and assembly state of early-
and late-stage aggregates by AFM/immuno-EM analysis (Fig.
6). Interestingly, our findings suggest that the oligomers
detected by SDD-AGE are key intermediates during the transi-
tion from liquid droplets to irreversible aggregates (Fig. 3). This
is consistent with the model that TDP-43 liquid–liquid phase
separation may lead to aggregation over time, as suggested by
studies of similar RNA-binding proteins linked to ALS/FTD
(48, 50). This mechanism resembles the aggregation process of
other neurotoxic proteins, such as Tau, �-synuclein, and �-am-
yloid, in which these intermediate products have been pro-
posed to be the toxic seeds that transmit cell damage and
pathology (72–78). Future experiments will examine whether
the TDP-43 oligomers at the initial aggregation time points are
also more toxic to cells and/or propagate more efficiently than
large aggregates in animal models.

The mechanisms and structural determinants of TDP-43 oligo-
merization have not been widely reported, although strong evi-
dence supports TDP-43 physiological oligomerization in cells
and in brain tissue (9, 27, 37). The initial complexes we observe
in our aggregation assays represent at least partially misfolded
species that may act as precursors of protein aggregation. These
are likely to be different from the soluble assemblies formed in
cells, which would be expected to disassemble under the semi-
denaturing conditions used for SDD-AGE analysis. Our SDD-
AGE results showing that the size and levels of oligomeric com-
plexes increase at higher temperatures further suggest that
these form as the protein undergoes misfolding (Fig. 2A). Based
on our findings, TDP-43 shows key similarities with the canon-
ical yeast prion protein Sup35, which was recently found to
assemble into functional, soluble complexes through liquid–
liquid phase separation in vitro and in yeast models (79). How-
ever, Sup35 also forms partially SDS-resistant oligomers that
promote prion propagation (80).

Our observation that aggregates generated from the purified
protein seed cellular cytoplasmic inclusions (Fig. 9) are consis-
tent with previous reports and our own observations (data not
shown) that TDP-43 aggregates from disease tissue and isolated
TDP-43 C-terminal fragments promote cellular TDP-43 aggre-
gation (41, 64, 81) and more recently in mouse brain (71). More-
over, these results show that rTDP-43 aggregates are relevant to
cell and patient-derived inclusions and suggest that, similar to
Tau and �-synuclein, TDP-43 aggregates act as templates in
cellular TDP-43 aggregation (63). We also provide strong evi-
dence that enhanced TDP-43 aggregation rates translate into
greater cellular seeding function, as seen with the ALS-linked
mutations A315T and M337V. By studying the aggregation and
seeding of A315T and M337V, we propose that pathogenesis is
strongly influenced by factors that increase the assembly and/or
alter the dissociation rates. Changes in the aggregation rate may
be due to structurally distinct complexes associated with the
mutations. However, our observations that A315T and M337V
aggregates nucleate cellular TDP-43 suggest that mutant com-
plex structure and assembly pathways are sufficiently similar to
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WT to act as seeds for aggregation. These findings open the
avenue for future studies aimed at addressing whether the
mechanisms observed with A315T and M337V apply to other
TDP-43 disease-associated mutations. This will increase our
understanding of the molecular basis of ALS-FTD pathogene-
sis. Importantly, studies on the mechanisms by which these
mutations alter structural and kinetic parameters of TDP-43
self-assembly will shed light on the regulation of the equilib-
rium between soluble complexes and irreversible aggregates.

Until recently, most efforts to understand TDP-43 aggrega-
tion centered on the low complexity C-terminal region. Our
results provide strong evidence supporting a central role of the
RNA-binding domains in TDP-43 aggregation, particularly
during the initial phase of misfolding. We showed that replac-
ing both RRMs with monomeric GFP drastically disrupts olig-
omerization and reduces large aggregate accumulation over
time (Fig. 7D). First, this suggests that in the absence of the
RRM-dependent oligomers, the N terminus and the C-tail are
not sufficient to form detergent-resistant aggregates, which
share common features with FTD and cell-derived inclusions
(Fig. 1, B and C). Second, it supports a model in which oligo-
merization provides a scaffold for TDP-43 aggregation. Previ-
ous studies showed that isolated RRM2 forms aggregates (82)
and that RRM2 polypeptides that are normally buried under
native conditions assemble into amyloid, leucine zipper struc-
tures (83–86). Based on these previous findings and our results,
we predict that RRM2 forms a hydrophobic core, intermediate
structure upon TDP-43 unfolding that mediates the oligomers
detected by SDD-AGE. Interestingly, the strong effect of RNA
binding in preventing TDP-43 oligomerization and aggregation
(Fig. 4) provides further support that stabilizing a specific RRM
conformation maintains protein solubility.

Experimental procedures

All reagents are from Sigma–Aldrich unless otherwise
specified.
Plasmid construction

Construction of the TDP-43 vector for bacterial expression
(SUMO-TDP43) was previously described (21). Oligonucleo-
tides used for mutagenesis and cloning are described in Table
S1. Deletion constructs for bacterial expression were made by
standard PCR and cloning between BamHI and SacI restriction
sites in pET28b/His-SUMO (87). Single-site substitutions,
including modification of the TDP-43 nuclear localization
sequence, were made by site-directed mutagenesis using the
QuikChange site-directed mutagenesis kit (Agilent Technolo-
gies) as described (15). The template used for mutagenesis of
the mammalian expression vector, HA-mCherry-TDP-43, was
made by cloning hemaggluttinin peptide-mCherry cDNA into
pCDNA5/FRT upstream of TDP-43 cDNA (NM_007375.3).
TDP-43 was cloned between BamHI and NotI sites. N-GFP-C
was generating by PCR-mediated fusion of TDP-43 residues
2–101, mEGFP, and TDP-43 residues 261– 414. This chimera
was cloned between BamHI and SacI restriction sites in
pET28b/His-SUMO.

Recombinant TDP-43 production and aggregation assays

Recombinant TDP-43 (rTDP-43) was generated in Esche-
richia coli and purified as previously described (21). His-tagged
recombinant Ulp1 protease was used to remove SUMO. Briefly,
rTDP-43 in the expression lysate was bound to nickel–
nitrilotriacetic acid–agarose and washed with wash buffer 1 (50
mM Tris, pH 8.0, 500 mM NaCl, 10% glycerol, 10% sucrose, 1 mM

TCEP), washed with wash buffer 2 (50 mM Tris, pH 8.0, 500 mM

NaCl, 10% glycerol, 10% sucrose, 50 mM Ultrol Grade imidaz-
ole, pH 8.0, 1 mM TCEP), and finally washed again with wash
buffer 1 to remove imidazole. Ulp1 was added to the protein-
bound beads at an approximate 1:1 molar ratio and incubated
for 30 min at 22 °C. The supernatant containing cleaved
TDP-43 was collected. For the aggregation assays rTDP-43 was
ultracentrifuged in a Beckman Coulter Optima TLX Ultracen-
trifuge using a TLA55 rotor at 40,000 rpm for 30 min at 4 °C to
remove any pre-existing aggregates. Soluble protein concentra-
tion was measured by nanodrop and diluted to 2 �M in the
reaction buffer (50 mM Tris, pH 8.0, 250 mM NaCl, 5% glycerol,
5% sucrose, 150 mM Ultrol Grade imidazole, pH 8.0). rTDP-43
aggregation was started by shaking at 1,000 rpm at 22 °C for 30
min with an Eppendorf ThermoMixer C. Samples were incu-
bated at 22 °C and collected for analysis by adding equal volume
of 2	 SDD-AGE sample buffer (80 mM Tris-HCl, pH 6.8, 10%
glycerol, 1% SDS, 0.2% bromphenol blue) and incubated at
22 °C for 10 min prior to loading on SDD-AGE. Analysis of
rTDP-43 aggregates was performed by SDD-AGE as previ-
ously described (24, 28), on a horizontal 1.5% agarose gel
electrophoresis in 20 mM Tris, 200 mM glycine, and 0.1%
SDS. Proteins were transferred onto polyvinylidene difluo-
ride membrane (Amersham Biosciences Hybond 0.45 �m
polyvinylidene difluoride; GE Healthcare) in a modified Mini
Trans-Blot cell (Bio-Rad) at 4 °C. Protein was detected with
traditional immunoblotting.

Sequential extraction of TDP-43 from postmortem human
brain tissue

Samples of frozen postmortem human brain tissue from con-
trol and FTD deidentified cases were obtained from the Cogni-
tive Neurology and Alzheimer’s Disease Center at Northwest-
ern University. Gray matter was dissected from frontal cortex
samples using a scalpel while maintaining the tissue in a frozen
state. Extraction methods were adapted from (33). Samples of
dissected tissue (�100 mg) were homogenized in 5 ml/g Tris-
sucrose buffer (25 mM Tris-HCl, pH 7.4, 5 mM EDTA, 1 mM

DTT, 10% sucrose, protease inhibitor (PI) mixture) with Kontes
Dounce tissue grinders (Kimble KT885300-0002). The homo-
genate was spun at 18,000 	 g (average relative centrifugal
force) for 30 min at 4 °C. The resulting pellet was next extracted
in 5 ml/g Triton X-100 buffer (Tris sucrose buffer, 1% Triton
X-100, 0.5 M NaCl) and centrifuged at 135,000 	 g (RCF aver-
age) for 30 min at 4 °C. To float and remove myelin, the pellet
was further extracted in TX-30% sucrose buffer (25 mM Tris-
HCl, pH 7.4, 5 mM EDTA, 1 mM DTT, 10% sucrose, 1% Triton
X-100, 0.5 M NaCl, 30% sucrose, PI mixture) and centrifuged at
135,000 	 g (RCF average) for 30 min at 4 °C. Finally, the pellet
was homogenized in 5 ml/g sarkosyl buffer (25 mM Tris, pH 7.4,
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5 mM EDTA, 1 mM DTT, 10% sucrose, 1	 PI mixture, 1%
N-lauroylsarcosine sodium salt, 0.5 M NaCl) and incubated at
room temperature for 1 h with shaking at 750 rpm on Advanced
Vortex Mixer (VWR 89399-884). The sarkosyl extracted homo-
genate was centrifuged at 135,000 	 g (RCF average) for 30 min
at 4 °C. The resulting pellet was resuspended in 100 �l of RIPA
buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1% Nonidet P-40,
0.5% SDC, 0.1% SDS, 5 mM EDTA, PI mixture, PhosStop
(Roche)), sonicated with a nanoruptor (Diagenode) for 10
cycles of 30 s on, 30 s off. SDD-AGE analysis was carried out
with 25 �l of this sample, representing 12.5% of the initial
sample.

Thioflavin binding

To test binding of initial rTDP-43 aggregates to the amyloid-
detection dye, ThioT, rTDP-43 monomer was first spun down
at 100,000 	 g for 30 min at 4 °C to remove any aggregates
formed during the freeze–thaw process. In a Corning Black
96-well plate (Fisher, catalog no. 07-200-762), 50 �l of 0.5 �M

rTDP-43 monomer was combined with increasing concentra-
tions (0 –1000 nM) of ThioT in a final volume of 100 �l. Non-
specific signal was assessed by incubating ThioT alone with
buffer. The reaction mixture was incubated for 2 h at room
temperature to allow formation of rTDP43 aggregates. At the
end of incubation, ThioT fluorescence was measured in a
BioTek plate reader using a 440/30-nm excitation filter, a 485/
20-nm emission filter, and top 50% optical setting. In parallel,
we incubated 0.5 �M of recombinant �-synuclein fibrils with
ThioT under the same conditions used for rTDP43. Methods to
produce recombinant �-synuclein monomer and fibrils were as
described previously (38). ThioT and ThioS binding to TDP-43
cellular aggregates was performed using HEK-TDP-43NLS cells
treated with sodium arsenite (0.5 mM, 30 min). Binding was
analyzed by immunofluorescence of paraformaldehyde-fixed
cells using 1 mM dye.

Liquid–liquid phase separation assays

Oregon Green 488 –labeled rTDP-43 was mixed with unla-
beled protein at a 1:10 ratio at 0.5 �M in 18 mM MES, pH 7.0, 5
mM Tris, 50 mM NaCl, 1% glycerol, 1% sucrose, 30 mM imidaz-
ole. The samples were visualized by fluorescence microscopy
immediately or incubated at 22 °C for 30 –120 min prior to
analysis or SDD-AGE. Reversal of phase separation was
achieved by raising the NaCl concentration to 250 mM imme-
diately after droplet formation.

Insoluble/soluble fractionation of rTDP-43 proteins

Samples were collected after ultracentrifugation as above
(day 0) or shaken for 30 min and collected after 5 days of incu-
bation at 22 °C (day 5). The samples were sonicated in a Biorup-
tor Pico (Diagenode) (30 s on/30 s off, 10 cycles) and ultracen-
trifuged at 40,000 rpm for 30 min at 4 °C, and soluble fraction
was obtained. The insoluble pellet was washed with RIPA-50
buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1% nonylphenyl-
polyethylene glycol (Nonidet P-40), 10 mM EDTA, 0.5% SDC,
and 0.1% SDS), sonicated, and ultracentrifuged. The remaining
insoluble pellet was resuspended in urea buffer (30 mM Tris, pH
8.8, 7 M urea, 2 M thiourea, and 4% CHAPS).

Cross-linking and labeling rTDP-43

For cross-linking analysis, rTDP-43 (0.5 or 1 �M) was incu-
bated with 0.25 mM disuccinimidyl suberate (Thermo Scien-
tific) for 1 h at 22 °C. The reaction was quenched by addition of
Tris, pH 8.0, to 50 mM final concentration and incubated for 15
min at 22 °C. rTDP-43 the was labeled with Oregon Green 488
maleimide (ThermoFisher Scientific) according to manufactu-
rer’s protocol. Labeled protein was purified with ZebaSpin col-
umns (ThermoFisher Scientific) and used to label aggregates.
Aggregation or LLPS assays included a 1:10 ratio mixture of
labeled to nonlabeled rTDP-43.

Atomic force and immuno-EM

Aliquots of rTDP-43 aggregation time points (10 �l) were
placed on a clean, freshly cleaved grade V-1 mica (catalog no.
01792-AB, Structure Probe, Inc.). After 10 min, the solvent was
wicked off by filter paper, and the mica was washed six times
with 20 �l of water to remove salts and buffer from the sample.
Samples were dried overnight, and AFM images were acquired
in tapping mode on a Veeco Dimension 3100 machine (Bruker)
with Bruker FESP tips. AFM images were analyzed using the
Gwyddion SPM data visualization tool. Carbon films on 200-
mesh copper grids (Ted Pella) were incubated with 5 �l of sam-
ple in the dark side of the grid. After 10 min, the sample was
wicked off from the grid and was incubated with 10 �l, 1% BSA
in PBS to block any nonspecific binding. The grid was incu-
bated with primary rabbit TDP-43 antibody 1:100 diluted in
PBS solution containing 0.1% BSA for 45 min. The grid was
then washed by seven drops of PBS buffer. The grid was incu-
bated with secondary anti-rabbit IgG antibody conjugated to
5-nm-diameter gold nanoparticles (Sigma–Aldrich) diluted
1:20 in PBS buffer containing 0.1% BSA. 45 min later, the grid
was washed by seven drops of PBS followed by seven drops of
water. Finally, the grid was stained by 4% uranyl acetate solution
for 10 min, washed with seven drops of water, and air-dried
before collecting the images on a JEM-1400 Plus transmission
electron microscope.

Cell culture

The cells were grown in growth medium–Dulbecco’s modi-
fied Eagle’s medium, 4,500 mg/liter glucose, L-glutamine, and
sodium bicarbonate and supplemented with filtered fetal
bovine serum at 10%. The cells were incubated at 37 °C, 5%
CO2. Stable human embryonic kidney cells expressing TDP-
43NLS (HEK-TDP-43NLS) upon induction with tetracycline
were generated from Flp-InTMT-REXTM293 cells (Thermo-
Fisher) according to the manufacturer’s instructions. The cells
were grown in the presence of hygromycin (50 �g/ml), and
transgene expression was induced with 1 �g/ml tetracycline.

TDP-43 aggregate cellular seeding

HEK-TDP-43NLS were plated and induced with 1 �g/ml tet-
racycline for 16 h to reach 80 –90% confluency. Recombinant
TDP-43, day 0 aggregates were transduced with Pierce protein
transfection reagent according to the manufacturer’s instruc-
tions at a final protein concentration of 0.1 �M in the culture
media. As controls, soluble rTDP-43 or transfection reagent
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only were used. The medium was changed 6 h post-transfec-
tion. After 24 h, the cells were trypsinized, washed, and
replated. For immunofluorescence, the cells were plated on
poly-D-lysine– coated coverslips 48 h prior to fixation in 4%
paraformaldehyde for 20 min. For fluorescence microscopy,
slides were permeabilized for 5 min at 4 °C with 0.3% Triton
X-100 and DAPI-stained. Coverslips were mounted, and the
cells were observed on a Leica DMI3000B inverted microscope
and Leica AF6000E software (Leica Microsystems Inc.). A 63	/
1.4 oil immersion objective was used for confocal microscopy
studies on a TCS SP5 microscope (Leica) using the LAS AF
software. Images were taken with the DAPI filter to eliminate
bias selection of aggregates. Cells positive for cytoplasmic
aggregation were quantified using ImageJ.

Antibodies

Immunoblots and indirect immunofluorescence were per-
formed with rabbit polyclonal anti–TDP-43 (ProteinTech
10782-2-AP), anti–TDP-43 phosphorylated at Ser-409/410
(Cosmo Bio, CAC-TIP-PTD-M01), and horseradish peroxidase–
conjugated goat anti-rabbit (Fisher Scientific PI-31460).
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