5 research outputs found

    A multi-agent optimisation model for solving supply network configuration problems

    Get PDF
    Supply chain literature highlights the increasing importance of effective supply network configuration decisions that take into account such realities as market turbulence and demand volatility, as well as ever-expanding global production networks. These realities have been extensively discussed in the supply network literature under the structural (i.e., physical characteristics), spatial (i.e., geographical positions), and temporal (i.e., changing supply network conditions) dimensions. Supply network configuration decisions that account for these contingencies are expected to meet the evolving needs of consumers while delivering better outcomes for all parties involved and enhancing supply network performance against the key metrics of efficiency, speed and responsiveness. However, making supply network configuration decisions in the situations described above is an ongoing challenge. Taking a systems perspective, supply networks are typically viewed as socio-technical systems where SN entities (e.g., suppliers, manufacturers) are autonomous individuals with distinct goals, practices and policies, physically inter-connected transferring goods (e.g., raw materials, finished products), as well as socially connected with formal and informal interactions and information sharing. Since the structure and behaviour of such social and technical sub-systems of a supply network, as well as the interactions between those subsystems, determine the overall behaviour of the supply network, both systems should be considered in analysing the overall system

    A review of supply network configuration literature and decision support tools

    Get PDF
    Supply chain literature highlights the increasing importance of effective supply network configuration decisions that take in to account such realities as market turbulence and demand volatility, as well as ever expanding global production networks. Supply network configurations decisions that account for these contingencies are expected to meet the evolving needs of customers while delivering better outcomes for all parties involved. This paper presents the findings of a structured review of supply network configuration literature which is synthesized under the two categories, drivers of supply network configuration decisions and the key parameters considered in developing decision support tools. This review also included an evaluation of the tools used for supporting supply network configuration decisions. The paper identifies the areas for future research, as well as the decision support tools required for building supply network capacity to meet the challenges brought about by the changing business environment

    Modelling sustainable supply networks with adaptive agents

    Get PDF
    This paper proposes a multi-agent modelling approach that supports supply network configuration decisions towards sustaining operations excellence in terms of economic, business continuity and environmental performance. Two types of agents are employed, namely, physical agents to represent supply entities and auxiliary agents to deal with supply network configuration decisions. While using the evolutionary algorithm, Non-dominated Sorting Genetic Algorithm-II to optimize both cost and lead time at the supply network level, agents are modelled with an architecture which consists of decision-making, learning and communication modules. The physical agents make decisions considering varying situations to suit specific product-market profiles thereby generating alternative supply network configurations. These supply network configurations are then evaluated against a set of performance metrics, including the energy consumption of the supply chain processes concerned and the transportation distances between supply entities. Simulation results generated through the application of this approach to a refrigerator production network show that the selected supply network configurations are capable of meeting intended sustainable goals while catering to the respective product-market profiles

    Multiagent Optimization Approach to Supply Network Configuration Problems With Varied Product-Market Profiles

    No full text
    This article demonstrates the application of a novel multiagent modeling approach to support supply network configuration (SNC) decisions toward addressing several challenges reported in the literature. These challenges include: enhancing supply network (SN)-level performance in alignment with the goals of individual SN entities; addressing the issue of limited information sharing between SN entities; and sustaining competitiveness of SNs in dynamic business environments. To this end, a multistage, multiechelon SN consisting of geographically dispersed SN entities catering to distinct product-market profiles was modeled. In modeling the SNC decision problem, two types of agents, each having distinct attributes and functions, were used. The modeling approach incorporated a reverse-auctioning process to simulate the behavior of SN entities with differing individual goals collectively contributing to enhance SN-level performance, by means of setting reserve values generated through the application of a genetic algorithm. A set of Pareto-optimal SNCs catering to distinct product-market profiles was generated using Nondominated Sorting Genetic Algorithm II. Further evaluation of these SNCs against additional criteria, using a rule-based approach, allowed the selection of the most appropriate SNC to meet a broader set of conditions. The model was tested using a refrigerator SN case study drawn from the literature. The results reveal that a number of SNC decisions can be supported by the proposed model, in particular, identifying and evaluating robust SNs to suit varied product-market profiles, enhancing SC capabilities to withstand disruptions and developing contingencies to recover from disruptions

    Mitigating Environmental Impact of Perishable Food Supply Chain by a Novel Configuration: Simulating Banana Supply Chain in Sri Lanka

    No full text
    As the world is moving into a sustainable era, achieving zero hunger has become one of the top three Sustainable Development Goals, applying a considerable amount of pressure on the agri-food systems to make decisions contemplating the sustainability dimensions. Accordingly, making effective supply chain decisions holistically while achieving sustainability goals has become a major challenge faced by the present agri-food systems. Thus, to address the challenge, a novel supply chain configuration addressing multiple supply chain decisions to reduce global warming potential (GWP) and post-harvest losses have been presented by taking the banana supply chain in Sri Lanka as a case study. In the proposed approach, farmers have been clustered based on their geo positions using K-Means clustering followed by route planning within clusters using a heuristics approach. Retailer points are catered by assigning to wholesalers optimally modeling as an assignment model and then route planning executed using a heuristic approach. The solution generated from the above approaches has been implemented on a simulation platform to calculate the overall supply chain performance including the transportation component, in terms of the net GWP, post-harvest losses, and lead time including routing operations. Simulated supply chain performance has been compared with the existing system and verified the performance of the proposed supply chain configuration. The suggested configuration has reduced the net GWP by 15.3%, post-harvest loss by 2.1%, lead time by 28.2%, and travel distance by 20.47%. The proposed configuration can be further improved by adding dynamic characteristics to the model
    corecore