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Abstract— This paper proposes a multi-agent modelling 
approach that supports supply network configuration decisions 
towards sustaining operations excellence in terms of economic, 
business continuity and environmental performance. Two types 
of agents are employed, namely, physical agents to represent 
supply entities and auxiliary agents to deal with supply network 
configuration decisions. While using the evolutionary algorithm, 
Non-dominated Sorting Genetic Algorithm-II to optimize both 
cost and lead time at the supply network level, agents are 
modelled with an architecture which consists of decision-making, 
learning and communication modules. The physical agents make 
decisions considering varying situations to suit specific product- 
market profiles thereby generating alternative supply network 
configurations. These supply network configurations are then 
evaluated against a set of performance metrics, including the 
energy consumption of the supply chain processes concerned and 
the transportation distances between supply entities. Simulation 
results generated through the application of this approach to a 
refrigerator production network show that the selected supply 
network configurations are capable of meeting intended 
sustainable goals while catering to the respective product-market 
profiles. 

 Keywords— supply network configuration, adaptive agents, 
sustainable operations excellence 

I. INTRODUCTION  
Sustainability goals are often discussed in the operations 

and supply chain management literature in terms of economic, 
environmental and social dimensions, with some emphasis on 
the long-term perspective, as well as stakeholder satisfaction 
[1-4]. However, a growing body of literature claims that pursuit 
of operations excellence can also contribute to achieving 
sustainability goals through such means as defects 
minimisation, waste elimination and stakeholder satisfaction 
[5-10]. Moreover, in order to sustain operations excellence, 
organisations must ensure that their operations systems are 
capable of responding to changes in the business environment, 
including shifting product-market profiles and competitive 
dynamics, as well as multiple types of uncertainty [11-14]. 

In the context of supply networks (SNs), these aspects are 
dealt with at each stage of value creation and delivery, through 

appropriate strategic, tactical and operational decisions [14-21]. 
Considering the relationship between operations excellence and 
sustainability perspectives highlighted in the literature, this 
paper explores how this nexus can be reinforced through 
effective supply network configuration (SNC) decisions. To 
this end, the paper develops a modelling approach that supports 
SNC decisions towards sustaining operations excellence in 
terms of economic, business continuity and environmental 
performance. As part of this approach, SNs are modelled using 
adaptive agents to simulate the decision-making behaviour of 
organisations in a dynamic business setting. The proposed 
approach helps identify optimal SNCs that satisfy multiple 
sustainability metrics against a given product-market profile.  

The paper is organised into six sections. Following this 
introduction, a summary of the literature review that informed 
the study is presented in Section II. The overall modelling 
approach employed, including a mathematical representation of 
the SNC problem, is outlined in Section III, followed by an 
overview of the solution approach proposed in Section IV. The 
efficacy of the proposed modelling approach is demonstrated 
using a case study in Section V, and the overall conclusions and 
future research directions are provided in Section VI. 

II. LITERATURE REVIEW 
The literature on addressing sustainability goals through 

operational excellence highlights the contribution of the major 
initiatives such as lean operations, total quality management 
and reverse logistics [5, 9]. Additionally, pursuing SN level 
sustainable goals through appropriate governance mechanisms 
(e.g. supplier assessment, supplier collaboration, multi- 
stakeholder initiatives) and leadership roles has been identified 
as useful initiatives [22-23]. In general, these initiatives aim at 
improving operations through minimization of waste, efficient 
use of resources and reuse of material, while meeting  the 
needs of key stakeholders in a rather holistic manner. More 
recent literature on operations excellence extends this notion 
by incorporating the need for building organizational 
capabilities to sustain performance levels attained through 
above initiatives [6, 12]. A nuanced perspective on this topic is 
to consider how sustainable operations excellence can be 
achieved through appropriate SN design and operation 



 
 
 
 
 

decisions, or more specifically SNC decisions, at a more 
fundamental level, which is further explored in this section.  

The range of opportunities and challenges brought about  
by the expansive global production networks are well- 
documented in the literature [15-18]. A globally distributed 
network of supply entities with distinct capabilities has the 
potential to create and deliver superior value to end customers, 
by leveraging the complementary strengths of individual 
entities and location-specific advantages. At the same time, the 
complexity of such networks induced by factors such as 
disparate goals pursued by individual entities and the country 
or region-specific logistics system attributes may pose 
significant operational challenges. When these aspects are 
considered in the context of ongoing changes in the broader 
business environment such as shifting product-market profiles 
and competitive dynamics, sustaining operations excellence at 
the level of SNs can become particularly arduous. 

In spite of the above challenges being frequently reported 
in the literature, efforts directed toward addressing them as  
part of SNC research has been rather limited. Melo et al. [18] 
reported that despite the extensive research undertaken on the 
facilities location problem as part of SN design decisions, it  
has not been integrated with other SN decisions such as 
transportation mode choice or routing. While highlighting the 
importance of considering the aspects such as robustness, 
resilience and responsiveness when assessing the sustainability 
of SNs, Klibi et al. [14] claimed that the assumptions used in 
developing SN models make them too simplistic. Similarly, 
Eskandarpour et al. [11] called for: broadening the scope of 
environmental and social measures used in SN design research 
to include life-cycle approaches; incorporating risk and 
uncertainty in multi-objective models; and testing SN models 
in appropriate settings to improve generalizability. Overall, the 
extant literature highlights the need for extending current SN 
design research to account for such aspects as uncertainty, 
dynamic business contexts and multiple performance 
objectives, as well as following more holistic approaches to 
the development and testing of SN models [18-19, 24-25]. 

Some recent research efforts have been directed towards 
addressing the above issues in the context of developing 
decision support tools. Zhang et al. [20] applied the analytical 
target cascading method to solve manufacturing service 
configuration problems involving distributed decision-making. 
This study demonstrated the effectiveness of the proposed 
approach in terms of generating the same results as obtained 
with centralized optimization approaches, while accounting for 
the autonomous decision objectives of individual SN entities. 
In a similar vein, Shukla and Kiridena [21] demonstrated the 
use of a fuzzy rough sets-based multi-agent approach to solve 
SNC problems, with simulation results confirming the 
effectiveness of the proposed framework in terms of fulfilling 
customer orders with lower production and emissions costs, 
compared to the results generated using comparative existing 
tools. By comparison Farahani et al. [19] employed a mixed- 
integer linear programing method, along with simulated 
annealing and linear relaxation-based heuristics to solve a 
multi-echelon multi-product SN involving price-sensitive 
customer demand zones. The results of this study confirmed 
the  significance  of  the  proposed   approach  in  relation     to 

supporting SNC decisions. Furthermore, a number of review 
papers published within the current decade have highlighted 
the contributions made through similar research efforts that 
have focused on tools supporting SNC decisions to account for 
sustainability goals in a more encompassing manner [15,17, 
20-21]. Given the growing interest in the topic of sustainable 
SN design and the progress witnessed in the area of analytics, 
there are opportunities for further extending this research 
towards the development of advanced decision support tools. 

III. PROBLEM REPRESENTATION 
The overall aim of the modelling approach used in this 

study is to determine the most sustainable SNC that satisfies a 
given product-market profile, while considering the diverse 
goals and autonomous decision-making behaviour of individual 
supply entities involved. Accordingly, the salient features of the 
modelling environment are: the agent environment; agent 
attributes and characteristics; and the agent architecture. These 
features, along with the relevant mathematical notations (refer 
Table I) relating to the SN context, are explained below. 

A. Agent Environment 
The structural and spatial attributes of the SN is what 

represent the agent environment in this paper. We consider a 
SN with I number of stages (S) where S = (S1...Si…SI), which 
could be any one of the three types, sourcing, manufacturing or 
distribution. Depending on the bill of material (BOM) of a 
product, there could be several types of raw material, product 
component or sub-assembly involved in the each stage. Each of 
these raw material, component and sub-assembly types is 
represented as a node in the SN. Accordingly, there could be 
multiple nodes at any stage. If there is a total of J nodes in the 
SN, then a node in the ith stage of the SN is represented by Nij. 
At each node, we consider that there are multiple (i.e.  Kj 
number of) competing supply entities, termed as entity options 
(Rijk), where Rijk є Nij, they are capable of performing the value- 
adding functions at the respective node. Depending on such 

 

 

 

 

R113

R121

R i j kR212

R313

R412

R511

 

Supplier Manufacturer Distributor Retailer

R223

R241

R451

R433

R514

R512

R132

i = Stage j = Node k = entity option

 
Fig. 1.Representation of a SN 

 



 
 
 
 
 

factors as location of facilities, capacity of their plants and the 
processes or technologies utilized, these entities can compete 
with each other on cost, lead time or quality parameters. This 
arrangement reflects the diversity in organizational goals and 
capabilities observed at the SN entity level. Fig. 1 illustrates 
this SN graphically with multiple entity options available at 
each node of a given stage. 

B. Agent Characteristics and Architecture 
There are numerous representations of agents (see [26-27] ), 

agent characteristics (see [26-28] ) and agent architectures (see 
[29-30] ) reported in the literature. Consistent with the way 
agents have been defined in the context of SNs, this study treats 
a SN agent as a human representative or mutually independent 
task. Agent characteristics are such that they display 
autonomous (i.e. independently make own decisions) and 
adaptive (i.e. change the behaviour/decisions upon external 
influences) behaviour. This behaviour may result from reactive 
(i.e. respond to the external influences through quick decisions) 
and pro-active (i.e. take prior initiatives to cope up with future 
changes) responses, as well as social (i.e. with other supply 
entities) interactions. Agent architecture is the make-up of an 
agent in terms of modules and the mechanisms through which 
these modules interact with each other [31]. Alternatively, 
agent architecture can be considered as a way of implementing 
the agent attributes and characteristics [30] introduced earlier. 
For the purpose of this study the agent architecture consists of 
three modules, namely, decision-making, learning and 
communication. The decision-making module is implemented 
through a rule-based reasoning approach, whereas the learning 
module is implemented using the Q-learning algorithm. The 
communication module is used for routing messages. 

The decision-making module is designed within an agent to 
make decisions on BPijk and BTijk. Within the context of multi 
agent systems (MAS), Markov decision process (MDP) is used 
as a mathematical framework for modelling dynamic systems 
involving sequential decision-making with a defined set of 
global states, actions, transition probabilities and reward 
functions [32-33]. MDP can be executed using model-based or 
model-free algorithms to determine the optimal policy by way 
of selecting an action in a given state. The optimal decision is 
awarded with a reward and the next state is determined using a 
transition probability function. In this study, we use a model- 
free algorithm considering the difficulty of developing an 
accurate model to represent the agent environment due to high 
variability and dynamic nature. Reinforcement learning is a 
model-free learning technique, where learning is reinforced 
through a reward mechanism when interacting with the 
environment [34]. We implement agent learning process within 
the learning module by employing what is known as ‘temporal 
difference learning’ via the Q-learning algorithm. Q-learning is 
a model-free learning algorithm which uses the Q-value of an 
action to predict the best action in the given state in order to 
maximize a cumulative reward. Once the learning module has 
updated the Q-table following a successful bidding attempt, the 
decision-making module selects an action through two methods 
namely, exploration and exploitation. In exploration, an action 
is selected randomly hoping that it might give a better reward 
whereas exploitation trusts the learnt values [32]. This action- 

selection is done to optimize the defined utility to the agent. 
The communication module helps to communicate with other 
connected agents in order to execute both decision-making and 
learning modules. 

C. Agent Types 
Two types of agents are introduced in this SNC context, 

namely, physical agents and auxiliary agents. Physical agents 
are the supply entities namely, supplier (SA) agents, 
manufacturer (MA) agents and distributor (DA) agents, as they 
exist in the real world performing typical SN operations. 
Auxiliary agents are introduced to support SNC decisions by 
finding optimal SNCs for a given set of product-market 
profiles. Such auxiliary agents are the order processing (OP) 
agent, supply entity selection (SES) agents (e.g. supplier 
selection agent, manufacturing plant selection agent), 
auctioning (AU) agent, optimizing (OPT) agent, transportation 
(TA) agent and evaluating (EA) agent. The proposed two types 
of agents have different architectures. Physical agents consist 
of all three modules introduced earlier whereas auxiliary agents 
consist of decision-making and communication modules only.  

1) Physical agents   
Physical agents are located in different geographical regions 

around the world, designated with an identification index (ID) 
indicating i, j, and k respectively. DAs are responsible for 
storing finished products ready to be dispatched to relevant 
customers, and MAs for assembling final products. SAs are 
arranged into a number of tiers according to the BOM of the 
product. For example, if the SC has three tiers in the supply 
stage; tier-1 suppliers supply all the sub-assemblies; tier-2 
suppliers supply the required parts and/or components; tier-3 
suppliers supply raw materials. Those physical agents have 
their distinct ACijk, and they may periodically increase their 
production capacity by a percentage of γ in a number of 
different ways (e.g. by adding new machineries or new 
technology). At the time agents are invited to bid in terms of 
BPijk and BTijk, those decisions are facilitated by the decision- 
making and learning modules of the physical agent concerned. 
These decisions are made based on the parameters such as RCijk 
and AACijk subject to future expansion strategies. 

The common objective of the physical agents is to 
maximize their Uijk as given in (1). All physical agents follow 
the same logic in making decisions, with the difference being 
the value of their attributes such as PCijk and PTijk. The 
decision-making process is illustrated in Fig. 2. Block A, B, C, 
D, E and F, highlight how decisions are made in different 
conditions using learnt knowledge. Learnt knowledge is 
represented by the Q-table (as given in Table II), in the form of 
a matrix where rows (m) stand for production capacity status 
and columns (n) stand for profit ranges. There are five 
production capacity status (m) as given in (2) to (6). Here, the 
AACijk is the difference between NCijk and OCijk as given in (7) 
where NCijk is calculated as given in (8) taking γ as the 
percentage increment in production capacity and OCijk as given 
in (9), assuming µ as the percentage of occupied production 
capacity.  RCijk  is equivalent  to  the  number  of units required 
from each node as given in (10). There are three profit   ranges  
There are three profit   ranges (n) namely, low (5-10 % of the 
PCijk), medium (10-15% of the PCijk), and high (15-20% of the 



 
 
 
 
 

PCijk). The profit (Pmn) corresponding to the each state-action 
cell is given in Table II. The value corresponding to each state-
action of the Q-table is updated based on the reward that the 
agent gained through  the bidding process. At the very first 
bidding instance in the case of a new product, the value of each 
entry is set to zero. Upon receiving an invitation to bid, the 

agent checks whether the invitation is for a new product 
(haven’t supplied earlier) or it is one of the regular products 
supplied. If the invitation is for a new product and is first-time 
bidding for that product, the agent executes block A. The agent 
decides on m by calculating and considering the agent 
properties as per (2) to (6). Then an exploration strategy is 
adopted to determine n as in (11). Accordingly, Pmn  is decided 
referring to Table II and BPijk is calculated as given in (12). 
BTijk is determined as given in (13) in which PTijk is multiplied 
by a defined constant based on the status of the production 
capacity (i.e. βm). If the invitation is for a first-time bid, but for 

TABLE I. MATHEMATICAL NOTATIONS USED IN MAS MODEL 
i  Stages (i = 1,2,3,…,I) 
j  Nodes (j = 1,2,3,…,J) 
k  Entity options (k = 1,2,3,…,Kj) 
S  =  (S1...Si…SI) Set of stages;  Si є S  
Si = (Ni1... Nij… Nim) Set of nodes;  Nij є Si  
Nij = {Rij1... Rijk… Rijm} Set of available entity options;   Rijk є Nij  
BPijk Bidding price  
BTijk Bidding time  
Uijk  Utility 
ACijk Annual processing capacity 
γ Percentage capacity expansion rate 
RCijk Required processing capacity  
AACijk Available annual processing capacity  
PCijk Processing cost  
PTijk Processing time  
Q Matrix which represents the Q-table 
m Processing capacity status (m = 1,2,3,4,5) 
n Profit ranges (n = 1,2,3) 
NCijk New processing capacity after expansion 
OCijk Occupied processing capacity  
µ Percentage occupied processing capacity 
δij Number of components/subassemblies required 

from node j according to the BOM 
Pmn Profit percentage at given m and n 
βm Time coefficient at different m  

(β1 =1; β2 =1.15; β3 =1.5; β4 =1.6; β5 =1.75) 
 Vl Volume of the product-market profile at 
consumer region l 

LTl Lead time of the product-market profile at 
consumer region l  

Pl Estimated WTP price of the product-market 
profile at consumer region l 

µ3, µ2, µ1 Percentage contribution of profit as reward (µ3  
≥ µ2≥ µ1) 

RPij Reserved price for node Nij 
RTij Reserved time for node Nij 
PPij Percentage price for node Nij 
PTij Percentage time for node Nij 
 α Unit distance transportation cost in between 

stages  

 Dijk→i’j’k’ Distance between two entity options (Rijk and 
Ri’j’k’) 

 V Average speed of the transportation method 
used 

 Dkk’ Distance matrix 
yijk 1: if entity option is selected; 0: otherwise 
 xijk→i’j’k’ 1: if there is a connection between two entity 

options; 0: otherwise 

 TTijk→i’j’k’ Transportation time between two entity options 
 TCjk→i’j’k’ Transportation cost between two entity options 

 

Objective of an agent 
Z = Maximize (Uijk  ) (1) 
Conditions for each production capacity status 
m=1 AACijk ≥ 0.5 * NCijk and AACijk ≥  RCijk (2) 
m=2 AACijk ≥ 0.5 * NCijk and AACijk<  RCijk (3) 
m=3 AACijk ≤ 0.5 * NCijk and AACijk≥  RCijk (4) 
m=4 AACijk ≤ 0.5 * NCijk and AACijk <  RCijk (5) 
m=5 AACijk = 0 (6) 
Calculation of available production capacity 
AACijk = NCijk - OCijk        (7) 
Calculation of new production capacity after 

i  NCijk = (1+ γ)* ACijk         (8) 
Calculation of occupied production capacity 
OCijk =  µ* ACijk                 (9) 
Calculation of required production capacity 
RCijk = δij * Vl                          (10) 
Exploration strategy  
n = rand (1,2,3) (11) 
Calculation of bidding price  
BPijk = PCijk (1 + Pmn) (12) 
Calculation of bidding time  
BTijk = βm  * PTijk (13) 
Exploitation strategy  
n = max (Q(m,:)) (14) 
Update Q-table with a positive reward  
Qmn  =  Qmn + µ1 (δij * Vl * Pmn) (15) 
Update Q table with a negative reward  

Qmn  =  Qmn - µ2 (δij * Vl * Pmn) (16) 
Reserved price for node Nij  
RPij ~ rnd [PPij* Pl ,0.85* PPCij* Pl] (17) 
Reserved time for node Nij  
RTij ~ rnd [PTij* LTl ,0.85* PPTij* LTl] (18) 
Bidding price constraint  
BPijk * yijk  ≤  RPij (19) 
Bidding time constraint  
BTjk * yijk  ≤  RTij (20) 

 



 
 
 
 
 

a regular product (already being supplied), then block B is 
executed to determine the bidding values. After finding the 
relevant m according to (2) to (6), the value of n is determined 
as indicated in (14) through exploitation strategy which is the 
highest reward in state m. Then BPijk and BTijk are calculated as 
given in (12) and (13). In both of the above instances, if the 
invitation is not for the first time, then the status of the previous 
bid for the same product-market profile is checked. If the 
previous bid was won by the agent, as indicated in block C, the 
Q-table is updated with a positive reward as given in (15) and 
the next round of bidding is done using a lower n than in the 
previous bid. Similarly, if the agent had lost the previous bid, as 
indicated in block D, then the Q table is updated with a 
negative reward as given in (16) and the next round of bidding 
is done using a lower n than in the previous bid. Block E and F 
are executed by checking the capability of the agent to bid with 
a lower n than in the previous round of bidding. If the agent is 
capable of finding a lower n than the previous round of bidding, 
then block E  is executed  following  an  exploration  strategy 
(as in (11)) to make the bid. If it is not possible to find a lower 
n than the previous round of bidding, then again upon checking 
the bidding status (won/lost) in the previous round of bidding, 
the agent makes a decision to whether to bid with the same 
value or quit bidding for that order. 

2) Auxiliary agents 
 Auxiliary agents generate alternative SNCs to suit different 

product-market profiles. Those auxiliary agents primarily have 
only decision-making and communication module as they act 
as executing agents, triggered by a message. 

OP agent: calculates the number of units required from the 

relevant Nij taking into account both Vl of the product-market 
profile and the BOM as given in (10). 

AU agent: determines a set of optimal RPij and RTij values 
separately using Genetic Algorithm rules for relevant SN nodes 
to support SES agents to determine which physical agents have 
been successful in their bidding. This set of optimal reserved 
values serve two purposes. First, to optimize the SN level 
performance both in terms of cost and lead time, and the 
second, to create a degree of competition among physical 
agents. The initial set of RPij and RTij (i.e. initial population)  
for GA are randomly generated within the defined upper and 
lower threshold values for each node as given in (17) and (18) 
respectively. For example, the upper threshold RPij value is 
determined taking the Pl of the product-market profile and PPij 
of the respective node. The initial population is then subjected 
to genetic operators such as mutation and crossover until 
termination criteria are met. 

Once the AU agent has generated a set of feasible   optimal 
RPijk and RTijk, it starts auctioning using those values as the 
first invitation. Then the auction continues until the 
termination criteria is met (i.e. pre-defined number of 
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Fig. 2. Reasoning process of the physical agent 

TABLE II. REPRESENTION OF Q-TABLE WITH PMN VALUES 

(Pmn  ) n 
1 2 3 

m
 

1 5% 10% 15% 
2 6% 11% 16% 
3 7% 12% 17% 
4 8% 13% 18% 
5 10% 15% 20% 

 



 
 
 
 
 

iterations or at the time when there are no more capable 
physical agents to bid). The new invitation is generated by 
lowering the initial reserved values by a percentage value. 

SES agents: suppliers/manufacturing facility/distribution 
centre selection agents are considered as the set of SES agents. 
The primary task of SES agents is to select feasible physical 
agents (candidate Rijk) by comparing RPijk with BPijk, and RTijk 
with BTijk as given in (19) and (20) respectively. 

OPT agent: optimizes SN level performance in terms of 
total supply network cost (TSNC) and lead-time (LT) as given 
in (21) and (22) by optimally configuring the SN to suit a given 
product-market profile. The TSNC consists of the two primary 
elements, processing cost (PC) (i.e. the first term of (21)) and 
transportation cost (TC) (i.e. the second term of (21)). 
Similarly, LT includes processing time (PT) (i.e. the first term 
of (22)) and transportation time (TT) (i.e. the second term of 
(22)). 

OPT agent receives candidates Rijks from SES agents and 
then the optimal alternative SNCs are generated using NSGA-II 
subjected to the condition that one physical agent at each node 
for each stage is selected to cater the given product-market 
profile as per (23). The transportation cost for each SNC is 
obtained by contacting the TA agent. 

From a mathematical point of view, generating optimal 
alternative SNCs belongs to the combinatorial optimization 
problem type, which cannot be solved with exhaustive search 
approaches in polynomial time. In this study we employed 
NSGA-II which is one of the popular evolutionary algorithms 
that has been used in a number of applications in many areas 
[35]. This algorithm initializes with a set of SNCs consisting of 
a physical agent from each node. Multiple objectives as in (21) 
and (22) of this problem are considered as fitness functions  of 
the NSGA-II. Based on those fitness functions, the initial 
population is ranked using the sorting algorithm known as 
Pareto-fast non-dominated (PF-ND) algorithm (see [35] for 

details). Genetic operators are performed on the initial solution 
namely: (i) selection, (ii) crossover, (iii) mutation and (iv) 
elitism to select the next generation. Elitism is the selecting of 
best performing supply entities for the next generation. The 
given genetic operators perform on the population on every 
iteration and that will continue until it meets the termination 
criteria generating the Pareto optimal front which contains 
alternative optimal SNCs. 

TA agent: calculates the transportation cost and time as 
given in (24) and (25) between the physical agents in a given 
configuration. TA agent maintains a database with the 
information about the Dkk’, α and V. 

EA agent: evaluates the optimal alternative SNCs based on 
other desired SN level performance measures (in addition to 
cost and time) and select one best SNC which suits to the given 
product-market profile. After a SNC is selected, all physical 
agents are informed through relevant SES agents to update their 
OCijk as given in (26) and the Q tables with positive rewards as 
given in (27). 

IV. SOLUTION APPROACH 
The overall arrangement of physical agents and auxiliary 

agents are shown in Fig. 3. Initially, the product-market profile 
of each consumer region is estimated in terms of Vl, LTl and Pl 
and that information is passed on to the OP agent for 
processing product-market profile specifications to determine 
the relevant supply nodes and the number of units required 
from each supply node. The OP agent is connected to both the 
AU and SES agent and the OP agent sends indexes of supply 
nodes and other product-market profile attributes to AU agent. 
At the same time, indexes of supply nodes and number of units 
required from each node are sent to SES agent. When the SES 
agent receives information from the OP agent, all physical 
agents are announced with the required number of units. 
Physical agents make their own decisions (i.e. BPijk and BTijk) 
based on their available resources and past experience. Those 
decisions are then communicated to the SES agent to compare 
the reserved values and the agent’s bid upon which the feasible 
physical agents (i.e. Rijks) are selected. Until the AU agent stops 
generating reserved values upon meeting terminating criteria, 
after every iteration, all physical agents are informed of the 
outcome of their bids. At the end of the auctioning process, the 
candidate physical agents are sent to the OPT agent. The OPT 
agent contacts the TA agent on need basis to get the 
transportation cost and time. Once the OPT agent optimizes  
the SN in terms of TSNC and LT determining optimal 
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TTijk→i’k’j’ = (Dijk →i’j’k’ . xijk →i’j’k’) / V (24) 
TCijk →i’j’k’ = xijk →i’j’k’. α. Dijk →i’j’k’   (25) 
 µ = µ + RCijkt / (1+ γ)* ACijkt.         (26) 
 Qmn  =  Qmn + µ1 (δij * Vl * Pmn) 
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alternative SNCs, EA agent is contacted to select the most 
suitable SNC based on the preference of the decision maker. In 
this study we consider sustainability as a key criterion. Once 
the best SNC is selected, then relevant physical agents are 
informed to update their OCijk and their knowledge base. In any 
instance where the OPT agent is not able to find an optimal 
configuration for a given demand profile, then the product- 
market profile is considered as baulked. In such cases the 
product-market profile attributes are re-evaluated to allow for 
feasible alternatives. 

V. CASE STUDY ANALYSIS 
We consider a dataset related to a refrigerator production 

network developed based on the resources drawn from [36-38], 
and introducing several other parameters as required to be 
tested using the proposed model. 

This refrigerator SN consists of four stages; two supply 
stages (i.e. raw material, component/module), the final 
assembly stage and the distribution (of finished products) stage. 
There are four nodes in tier-2 supply stage, supplying raw 
material namely Iron, Plastic, Aluminium and Copper. Tier-1 
supply stage provides the required 25 different components 
from five different supply nodes. In the manufacturing stage, 
the final products are assembled in order to dispatch to the 
distribution centers through which retailers at each consumer 
region receive goods. There are multiple entity options (i.e. Rijk) 
available to perform the required value-adding functions at 
each node. We consider five consumer regions in Europe with 
derived product-market profiles considering the differences in 
price level index, population and individual income. 

We carried out an experiment using a set of product-market 
profiles  on  the  MAS  model  to  generate  alternative optimal 
SNCs which minimizes TSNC, as well as LT, while satisfying 
individual agent constraints and SN level constraints. Fig. 4 is 
an illustration of the outcomes (i.e. bidding values) of the 

auctioning process. The agent ID-117 kept reducing the bidding 
price for the first three iterations and then stayed at same price 
thereafter whereas agent ID-1110 quitted bidding after the third 
auction round. Fig. 5 shows the Pareto fronts generated by 
NSGA-II for the product-market profile of region 4 which 
indicates the TSNC and LT of alternative optimal SNCs. 

On these optimal configurations, the sustainability aspect is 
measured in terms of energy consumption. The experiment 
results are presented in Table III, which includes TSNC and LT 
ranges for the Pareto-optimal SNCs and the performance (in 
terms of TSNC and LT) of the most sustainable SC. Simulation 
results show that the selected SNCs are capable of meeting 
environmental performance and cost targets while satisfying 
the respective product-market profiles.  

VI. CONCLUSIONS 
The study reported in this paper adopted a multi-agent 

modelling approach implemented on the MATLAB 2016b 
platform along with auction-based agent interactions to model 
the individual decision-making behaviour of supply entities in a 
SN. Two types of agents (physical and auxiliary agent) were 
employed with distinct agent architectures to serve the intended 
purposes of the SNC problem. Simulation results generated 
through the application of this approach to a refrigerator SN 
demonstrated the adaptive behaviour of physical agents in 
terms of making competitive bids based on their resources 
availability. The alternative optimal SNCs generated using this 
competitive bidding process were evaluated against a set of SN 
conditions, sustainable goals (in terms of economic, business 
continuity and environmental performance) and the consumer 
specific requirements. The proposed model can assist decision 
makers with identifying the most sustainable SNs that meet a 
given set of product-market conditions, as well as evaluating 
the alignment between sustainable goals and product-market 
profiles at regular intervals. With minimal modifications, this 
model could also be used as a tool for supporting a number of 
other decisions such as developing contingency plans in case an 
established SNC is not able to operate as intended (due to 
unforeseen circumstances such as disruptions caused by 
internal or external events), finding the most common SNCs or 
competitive supply entities for a range of product-market 
profiles. From a practical point of view, the above 
considerations may help managers in initiating and maintaining 
suitable relationships with preferred supply chain partners, as 
well as assessing the capacity of the existing SN in terms of 
adapting to changing product-market profiles. As such, in 
future studies, the proposed model can be extended to account 
for factors such as reliability of supply entities and evaluating 
the compatibility among the selected set of supply entities, 
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TABLE III. ATTRIBUTES OF ALTERNATIVE SNCS AND SUSTAINABLE SNC 

Demand 
profile 

(Ql, DTl, Pl) 

SNC solutions % Saving Sustainable SNC 

TSNC range LT 
range Cost Time TSNC,  % 

Saving 
LT, % 
Saving 

(55,25,1100) [729,786] [13,18] [34,29] [48,28] (730,34) (17,32) 
(45,22,1000)  [734,785] [15,19] [26,22] [32,14] (762,24) (15,32) 
(40,40,1350) [788,858] [26,32] [37,42] [35,20] (854,37) (26,35) 
(120,35,1250) [719,777] [19,26] [39,42] [26,46] (772,38) (20,43) 
(150,31,2000) [1384,1449] [17,24] [28,31] [23,45] (1447,28) (17,45) 

 



 
 
 
 
 

considering the overall SN level goals. Furthermore, there is 
room for testing the capacity of a given SN to achieve 
sustainable goals in light of other conditions such as disruptions 
and variations in product-market profiles. 
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