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ABSTRACT 

Supply chain literature highlights the increasing importance of effective supply network configuration decisions 

that take into account such realities as market turbulence and demand volatility, as well as ever-expanding global 

production networks. These realities have been extensively discussed in the supply network literature under the 

structural (i.e., physical characteristics), spatial (i.e., geographical positions), and temporal (i.e., changing supply 

network conditions) dimensions. Supply network configuration decisions that account for these contingencies are 

expected to meet the evolving needs of consumers while delivering better outcomes for all parties involved and 

enhancing supply network performance against the key metrics of efficiency, speed and responsiveness. However, 

making supply network configuration decisions in the situations described above is an ongoing challenge. 

Taking a systems perspective, supply networks are typically viewed as socio-technical systems where SN entities 

(e.g., suppliers, manufacturers) are autonomous individuals with distinct goals, practices and policies, physically 

inter-connected transferring goods (e.g., raw materials, finished products), as well as socially connected with 

formal and informal interactions and information sharing. Since the structure and behaviour of such social and 

technical sub-systems of a supply network, as well as the interactions between those subsystems, determine the 

overall behaviour of the supply network, both systems should be considered in analysing the overall system.   

Accordingly, the first and the most significant research need addressed in this study is enhancing the performance 

of a geographically dispersed, multi-echelon supply network in a distributed decision-making environment, where 

individual supply network entities aim to satisfy their own organisational goals. The second research need 

addressed in this study is to achieve the above goals with minimal information sharing between supply network 

entities, which reflects the real-world situation of organisations’ reluctance to disclose commercially sensitive 

information. The third research need addressed in this study is to provide analytical insights for SN decision-

makers to sustain SN-level competitiveness in the face of changing SN conditions (e.g., uncertainties and 

dynamics). 

In the literature, approaches such as multi-agent systems and intelligent systems have been proposed as suitable 

for dealing with complex and dynamic systems and distributed decision-making problem contexts. The structure 

and behaviour of supply networks, which is also consistent with the characteristics and principles of multi-agent 

systems, make them particularly suitable for studying in the form of distributed systems. Therefore, this study 
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proposes a comprehensive multi-agent optimisation approach in combination with intelligent auctioning and 

bidding strategies to address the research needs mentioned above.  

To this end, a multi-stage, multi-echelon supply network consisting of geographically dispersed supply network 

entities catering to distinct product-market profiles was modelled. In modelling the supply network configuration 

decision problems, two types of agents, physical and auxiliary agents, each having distinct attributes and functions 

were introduced with the purpose of modelling the supply network entity behaviour and the supply network 

configuration decision-making process. Agents were modelled with an architecture, which consists of a decision-

making module, a learning module and a communication module. Physical agents were modelled with all three 

modules, whereas auxiliary agents were modelled using the decision-making and communication modules. 

Decision-making modules of the physical agents were implemented through a rule-based approach, and the 

learning modules were implemented using the Q-learning algorithm. The communication modules of both agents 

were used for routing messages between them. Decision-making modules of auxiliary agents were executed with 

evolutionary algorithms and a rule-based approach. Furthermore, the modelling approach incorporated an 

intelligent bidding mechanism with a reverse-auctioning process. This simulated the behaviour of autonomous 

supply network entities collectively contributing to enhancing supply network-level performance, by means of 

setting reserve values generated through the application of a Genetic Algorithm. A set of Pareto-optimal supply 

network configurations catering to distinct product-market profiles was generated using the Non-dominated 

Sorting Genetic Algorithm-II. Further evaluation of these supply network configurations against additional 

criteria, using a rule-based approach, allowed the selection of the most appropriate supply network configuration 

to meet a broader set of conditions. The proposed model was tested on a case study of a refrigerator production 

network to draw lead time and cost comparisons under changing supply network conditions. 

The majority of studies in the supply network configuration literature have developed supply network 

configuration models for static and deterministic supply network conditions using combinatorial optimisation 

techniques while adopting a centralised decision-making approach. This study, in contrast, developed a 

comprehensive multi-agent optimisation approach, as mentioned above, addressing the research needs as 

specified. In terms of contribution to theory, synthesising the state-of-the-art information on the topic of supply 

network configuration modelling and then identifying the key factors that drive supply network configuration 

decisions is a primary contribution of this study. Additionally, a number of theoretical insights such as a deeper 

understanding of the relationships among supply network entity-level decisions, and contextual factors and supply 
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network-level performance were drawn from the analysis of  SN literature. Compared to the existing decision 

support tools, the proposed multi-agent-based optimisation approach effectively addresses the three key 

challenges referred to earlier, which is a significant contribution to practice. Potentially, this model can be used 

to enhance supply network configuration decisions by any supply network entity, as well as other parties such as 

analysts, policymakers or consultants by providing useful analytical insights to sustain supply network-level 

competitiveness under changing supply network conditions. The proposed approach could be extended to 

incorporate other emerging techniques and to solve other variants of the supply network configuration problem in 

future studies.  
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 INTRODUCTION 

 Background of the study 

 Supply networks, challenges and opportunities 

The typical definition of a supply chain (SC) is the arrangement of business entities such as suppliers, 

manufacturers, distributors and retailers to acquire raw materials, transform them into components and assemblies, 

and then distribute the final products to end-users. Examining the way businesses operate and compete in the form 

of SCs draws attention to a number of issues that would otherwise have not been captured and/or given adequate 

consideration. For example, the need for aligning the strategic goals of business entities, and process integration 

and information sharing across the SC, which are critical to delivering a superior customer value proposition (i.e., 

providing better product or service for the price), is often overlooked when businesses compete as individual 

entities. These aspects and others such as coordination, communication, and collaboration between business 

entities have been dealt with extensively in SC literature over a long period (Mustafa & Irani 2014; Maleki & 

Cruz-Machado 2013; Meixell & Gargeya 2005). 

Furthermore, the way global production systems have evolved over the past few decades highlights that many 

business entities are part of more than one SC; they are, in effect, entities in supply networks (SNs) (MacCarthy 

et al. 2016; Braziotis et al. 2013). The notion of SNs introduces further challenges, as well as opportunities, for 

businesses in terms of creating, delivering and capturing value. On the one hand, the inherent complexities of SNs 

can exacerbate challenges such as alignment, coordination, communication, and integration between business 

entities. On the other hand, when businesses operate as a well-organised network, they can not only leverage their 

complementary strengths to deliver better customer value but also can utilise their combined capacity towards 

mitigating risks, guarding against disruptions and the like.  

Hence, the capacity of a SN to deliver superior customer value is largely determined by the way that the SN is 

organised. More specifically, the real value-adding potential of a SN as a whole lies in the way it is configured – 

i.e., how the various elements (SN entities, processes etc.) in the  SN  are combined to create and deliver a superior 

customer value proposition while taking into account the contingencies driven by evolving product-market 
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profiles and changing organisational and environmental conditions (Surana et al. 2005; Kemppainen & 

Vepsäläinen 2003). In recognition of the above perspectives, many authors have emphasised the significance of 

supply network configuration (SNC) decisions and the need for research that informs SNC decisions (Yao & 

Askin 2019; Shukla & Kiridena 2016; Akanle & Zhang 2008; Piramuthu 2005a). 

 Supply network configuration 

In general, SNCs refer to the alternative ways in which the entities within a SN are organised, considering the 

varied and often changing needs of end-customer (i.e., consumer) requirements. The most common definition for 

SNC used in the literature is the alternative arrangements of SN entities, processes and resources in the SN when 

there are multiple options available, in order to differentiate between the SN entities in terms of key performance 

metrics such as cost and lead-time (Moncayo-Martínez & Recio 2014; Mastrocinque et al. 2013; Nepal et al. 2011; 

Akanle & Zhang 2008). In practical terms, SNC decisions aim to enhance the expected SN performance (e.g., 

responsiveness and efficiency) across a SN by building SN capabilities to be: flexible by effectively dealing with 

customised orders; robust by being able to withstand uncertainties in the internal and external environment; and 

agile by exploring and adopting new business practices (Chandra & Grabis 2009a; Lou et al. 2004). 

 Problem statement and research questions 

The competitiveness and sustainability of SNs  depend on their success (i.e., effectiveness) in terms of delivering 

a superior customer value proposition. Consumer requirements are distinct and varied; the product-market profile 

of a consumer region can capture the estimated consumer requirements in multiple attributes such as price, volume 

and lead-time. However, the pace of changing product-market profiles with the ongoing advancements in 

technology and information systems, as well as the pursuit of broad-based initiatives such as Industry 4.0, 

introduce both opportunities and challenges to SNs to be competitive and sustainable (Frank, Dalenogare & Ayala 

2019; Tjahjono et al. 2017). The varied and often changing product-market profiles have been dealt with in the 

SN literature giving attention to both product-specific needs and expected SN-level performance (Vaidya, Ambad 

& Bhosl 2018). The product-specific needs represent the distinct requirements of consumers in terms of product 

specifications such as functionality, durability and quality, which have been catered for through mass 

customisation and faster introduction of new products (Yao & Ronald 2019). Other attributes of the product-

market profile determine the desired SN-level performance. For example, a certain SN needs to be more efficient 
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if the consumers are more sensitive to price, whereas another SN needs to be more responsive if the consumers 

demand timely and flexible responses to their requirements.  

Along with the technological advancements and varied and often changing product-market profiles, SNs have 

been subjected to many structural changes such as an increased number of SN echelons and SN entities. Also, 

SNs are spread across multiple geographical regions with the involvement of SN entities from different locations 

due to potential advantages such as low manufacturing costs, tariff levels and trade concessions (Yao & Askin 

2017; Rauch et al. 2015; Mourtzis & Doukas 2013).  SNs are growing structurally and spatially, however, 

challenges associated with changing conditions in the broader SN environment are also unavoidable. The two key 

challenges in this regard are dealing with the effects of uncertainties (e.g., changing SN entity attributes such as 

operations cost and operations time) and dynamics (e.g., shifting product-market profiles, entering and losing SN 

entities) due to disruptions such as natural calamities, industrial actions and technological advancements. Overall, 

the challenges associated with evolving SNs have been discussed in the SN literature under the structural (i.e., 

physical characteristics), spatial (i.e., geographical positions) and temporal (i.e., changing SN conditions) 

dimensions (Garcia & You 2015; Klibi, Martel & Guitouni 2010; Coe, Dicken & Hess 2008).    

Despite the circumstances discussed above, SN entities still tend to operate based on the premise that once a SN 

is configured to suit a given product-market profile, it would remain the same for the foreseeable future (Braziotis 

et al. 2013; Huang et al. 2005). This is mainly because of such factors as the benefits of maintaining long-term 

relationships, contractual arrangements and ease of coordination and communication (Braziotis et al. 2013). 

However, on the one hand, sticking to the same SC for too long can lead to the loss of competitiveness at the SN-

level due to both advancements in technology and unforeseen reasons, which have significantly altered the overall 

competitiveness of alternative SCs. On the other hand, shifting product-market profiles means that a certain SC, 

that has been configured to serve a given product-market profile at a particular point in time, could become less 

competitive if it no longer fulfils the requirements of the current product-market profile (Melnyk, Narasimhan & 

DeCampos 2014; Ballou 2007). Accordingly, retaining the same level of SN conditions has been found ineffective 

in terms of catering to varied and changing product-market profiles and responding to changing SN conditions, 

and hence not achieving the expected SN-level performance goals. The significance of SNC has been highlighted 

in the SN literature with respect to its role in reconfiguring SNs, considering the circumstances referred to above 

(Zhang et al. 2009; Chandra & Grabis 2009a).  
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As such, effective SNC decisions have the potential to enhance SN-level performance in the face of changing SN 

conditions while catering to varied and often changing product-market profiles. Hence, developing models to 

support SNC decisions has been identified as a pertinent research need (Yao & Askin 2019; Garcia & You 2015; 

Klibi, Martel & Guitouni 2010).  In spite of the substantial body of scholarly work available in the area of SN 

design and optimisation, there have been limited studies addressing SNC decisions (Yao & Askin 2019; Shukla 

& Kiridena 2016; Chandra & Grabis 2009a). Review of extant literature reveals the limitations in capturing the 

SN characteristics in terms of structural, spatial and temporal dimensions (Yao & Askin 2019). Certain factors 

affecting the structural complexities of SNs such as product variants, multiple echelons and multiple SN entities 

have been addressed to some extent in the SNC literature; however, spatial and temporal dimension have been 

addressed sparsely (Yao & Askin 2019; Klibi, Martel & Guitouni 2010). The importance of modelling multi-

echelon SNs including both upstream and downstream entities located in different geographical regions; and 

accounting for autonomous decisions made at the SN-entity level, with minimum need to share information 

between them,  towards enhancing SN-level performance, have been identified as major research needs (Yao & 

Askin 2019; Fuenfschilling & Binz 2018; Sáenz, Revilla & Acero 2018). 

The majority of the currently available SNC models have attempted to address the research needs referred to above 

by adopting combinatorial optimisation approaches to find optimal SNCs in terms of efficiency and 

responsiveness assuming static and deterministic SN conditions (Yao & Askin 2019; Sheremetov & Rocha-Mier 

2008). A number of authors have highlighted the limitations of such optimisation approaches in the context of 

SNC, particularly with respect to handling the autonomous decision-making behaviour of SN entities and 

addressing changing SN conditions (Akanle & Zhang 2008; Sheremetov & Rocha-Mier 2008). 

In summary, the limited body of published work in the SN literature related to SNC problems suggests the need 

to generate alternative optimal SNCs dealing with varied and changing product-market profiles, changing SN 

conditions, and disparities between SN entities in terms of their behaviour and decision-making, in order to 

achieve expected SN-level performance by the diligent selection of appropriate modelling approaches and solution 

methodologies.  
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Having considered the abovementioned research needs, this study focuses on addressing two key research 

questions: 

I. What are the key factors that underpin SNC decisions? 

II. How can SNC decisions be supported through the identification of SNs that are optimally 

configured to cater to different product-market profiles, under changing SN conditions? 

 Research aim and objectives 

To address the two research questions stated in Section 1.2, the aim and objectives of this research study are 

formulated as follows. 

Aim: to develop a comprehensive approach that is capable of generating alternative SNCs for varied product-

market profiles, optimised against a selected set of parameters under a given set of organisational and 

environmental conditions. 

Objectives: 

I. define and conceptually model a typical SN to sufficiently represent the key drivers of SNC 

decisions;  

II. formulate the conceptual model developed in (I) above mathematically using appropriate 

modelling approaches; 

III. implement the conceptual model developed in (I) above using a suitable programming language 

and/or software tools; and 

IV. test the veracity of alternative optimal SCNs generated using the computer-based model 

developed in (III) above, by way of following appropriate verification and other analysis 

protocols. 

 



6 

 

 Research methodology 

The research problem presented in Section 1.2 highlights the necessity of suitable modelling approaches and 

solution methodologies that can generate alternative SNCs for varied product-market profiles in the face of 

changing SN conditions. It also requires evaluating the decisions made by autonomous SN entities against 

achieving optimal SN-level performance with minimum information shared between the SN entities. Accordingly, 

the need for modelling decision-making at the SN entity level and capturing its impact at the SN-level is 

recognised. The majority of studies in the SNC literature have developed SNC models for static SN conditions 

using combinatorial optimisation techniques aimed at finding optimal SNC(s) based on the desired performance 

attributes of SN entities. This indicates that existing SNC models address decision-making only at the SN-level 

towards achieving the expected SN-level performance. 

In the systems perspective, supply networks are typically viewed as socio-technical systems where SN entities 

(e.g., suppliers, manufacturers) are autonomous individuals with distinct goals, practices and policies, physically 

inter-connected transferring goods (e.g., raw materials, finished products), as well as socially connected with 

formal and informal interactions and information sharing (Behdani 2012). Since the structure and behaviour of 

such social and technical subsystems determine the overall behaviour of the SN (Otten et al. 2006), both systems 

should be considered in studying the overall system.  The structure and the behaviour of SNs take the form of 

distributed decision-making, which is more consistent with the characteristics and principles of a multi-agent 

system (MAS). Also, techniques such as MAS and agent-based modelling (ABM) are recommended in the 

literature to represent such complex, dynamic and distributed decision-making problems (Juneja et al. 2017). 

Therefore, this study undertakes a comprehensive approach to developing a multi-agent optimisation model 

(MAOM), employing a multi-agent optimisation modelling approach in combination with an intelligent 

auctioning and bidding strategies. Accordingly, the MAOM models the decisions of SN entities and evaluates the 

effects of those decisions at the SN-level when catering to varied product-market profiles. 

To this end, a multi-stage, multi-echelon SN consisting of geographically dispersed SN entities catering to distinct 

product-market profiles was modelled. Two types of agents were modelled under the proposed modelling 

framework - physical and auxiliary agents. Physical agents represent the supply entities of the SN, whereas 

auxiliary agents handle the computational aspects of the framework. Agents were modelled with a novel 

architecture comprising of a decision-making module (DM), a learning module (LM) and a communication 
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module (CM). The modelling approach incorporated a reverse-auctioning and bidding process to simulate the 

adaptive and competitive behaviour of SN entities with differing individual goals, collectively contributing to 

achieving expected SN-level performance. Further, a set of Pareto-optimal SNCs catering to distinct product-

market profiles was generated at the final stages using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). 

Evaluation of these SNCs against additional criteria, using a rule-based approach, allowed the selection of the 

most appropriate SNC to meet a broader set of conditions.  

The proposed MAOM was tested using a refrigerator SN case study drawn from the literature, first verifying the 

model using appropriate protocols, and then scenario analysis were performed to test the robustness of the 

proposed MAOM and sensitivity analysis were performed to estimate the extent to which, the SN-level 

performance is vulnerable to the changes in SN characteristics. 

 Contributions of the study 

As outlined in Section 1.2, contingencies for the evolution of SN such as by the expansion of SNs with an increased 

number of autonomous SN entities and changing SN conditions highlight the need for SNC models with suitable 

modelling approaches and solution methodologies. Similar to other models dealing with the SN design decisions, 

the appropriateness of SNC models is mainly determined by the extent to which the SN characteristics have been 

incorporated, as well as the efficiency and effectiveness of the modelling approaches and solution methodologies 

used (Barbati, Bruno & Genovese 2012; Klibi, Martel & Guitouni 2010). The review of SNC literature (as will 

be presented in Chapter 2) has revealed a number of limitations of the existing SNC models in terms of accounting 

for real-life SN characteristics and solution methodologies that have been partially addressed in previous studies.  

The first and the most significant research need addressed in this study is enhancing SN-level performance in a 

geographically dispersed, multi-echelon distributed decision-making SN environment, where individual SN 

entities aim to satisfy their own organisational goals. The second research need was to achieve the above goals 

with a minimal requirement for sharing information between SN entities, which reflects the real-world situation 

of organisations’ reluctance to disclose commercially sensitive information. The third research need addressed in 

this study is to provide analytical insights for SN decision-makers to sustain SN-level competitiveness in the face 

of changing SN conditions (e.g., uncertainties and dynamics). 

These research gaps are addressed through developing the MAOM using a MAS based optimisation modelling 
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approach in combination with an intelligent auctioning and bidding strategies. Accordingly, the proposed MAOM 

in this study can be benchmarked against existing comparable SNC models, considering the level of detail at 

which it addresses the aspects of SN characteristics, SNC decisions, SN-level performance measures, SN 

modelling approaches and solution methodologies. Figure 1.1 presents a summary of the existing literature (the 

contribution of the majority of the literature) and the contributions of the proposed approach to SNC literature. As 

indicated in Figure 1.1, the input used in the SNC model is the product-market profile of a given consumer region, 

and the output is Pareto-optimal SNCs with respect to the desired SN-level performance. Accordingly, the 

proposed MAOM is capable of generating Pareto-optimal SNCs for a given product-market profile incorporating 

structural, spatial and temporal SN dimension.  

The product-market profile, which represents the consumer requirements, has been limited to cover the volume 

attribute in the extant literature (Dharmapriya, Kiridena & Shukla 2016). However, this study identifies the need 

for a more comprehensive representation of product-market profiles, including other attributes such as expected 

lead time and willing-to-pay (WTP) price. Capturing product-market profile through multiple attributes serves 

three key purposes: primarily, it provides a complete representation of consumer requirements; secondly, these 

product-market profile attributes represent SN-level performance metrics rather than product-specific 

performance measures such as quality and functionality; finally, these product-market profile attributes provide 

guidance in relation to making SNC decisions and setting the desired SN-level performance metrics. 

Additionally, in this study, a number of other limitations reported in the SNC literature have been addressed: i.e., 

modelling multi-stage (upstream, midstream and downstream), multi-echelon SNs  with geographically dispersed 

autonomous SN entities. Furthermore, compared to the static (e.g., same set of SN entities stay in business over 

time) and deterministic (e.g., constant SN entity attributes), SN contexts used in previous studies, this study 

modelled changing SN conditions incorporating SN uncertainties and dynamics pertaining to the SN context. 

Moreover, SNC models which have been developed in the literature commonly adopted a centralised approach 

using combinatorial optimisation techniques to generate optimal SNC(s). Those SNC models addressed only SN-

level decision making; the primary limitation of that approach is not incorporating the effects of the autonomous 

behaviour of SN entities at the SN entity-level. Instead, the modelling approach used in this study simulates the 

adaptive and competitive behaviour of SN entities with differing individual goals, collectively contributing to 

enhancing SN-level performance. In addressing these limitations, the novelty of the proposed comprehensive 

approach to deal with SNC decisions come from its capacity to account for the comprehensive representation of 
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Figure 1.1: Existing literature vs the proposed approach
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SN characteristics, and the autonomous decisions of individual SN entities, changing SN conditions, varied and 

often changing product-market profile, by the diligent selection and application of ‘state-of-the-art’ knowledge 

and technology.  

In terms of contribution to theory, synthesising the state-of-the-art information on the topic of supply network 

configuration modelling and then identifying the key factors that drive supply network configuration decisions is 

a primary contribution. Additionally, a number of theoretical insights were also drawn such as a deeper 

understanding of the relationships among SN-entity level decisions, and contextual factors and SN-level 

performance. Compared to the existing SNC models, the proposed approach effectively addresses the three key 

challenges referred to earlier, which is a significant contribution to practice. Potentially, this model can be used 

to enhance SNC decisions by any SN entity, as well as other parties such as SC analysts, policymakers or 

consultants by providing useful analytical insights to sustain supply network-level competitiveness under 

changing SN conditions. In terms of the contribution of this study to knowledge, there is a distinct advantage in 

applying this type of decision support tools in relation to enhancing SNC decision making. 

  Limitations of the study 

This study addresses a number of significant research gaps identified through the review of extant SNC literature 

while contributing to both theory and practice, as outlined in Section 1.5. Despite such contributions, there are 

some limitations relating to the generalisability of the proposed MAOM.  

The first limitation of this study is the lack of real-life data to validate the developed MAOM. Nevertheless, the 

model was validated in the form of face validity and conceptual model validity (see Chapter 4 and 5). There are a 

number of reasons for not being able to validate the proposed MAOM using real-life data. Mainly, the broad scope 

of this study which considers SN entities involved in the end-to-end SC functions. Depending on the bill of 

material (BOM) of the product, there are a number of upstream, midstream and downstream SN entities arranged 

into echelons. These SN entities are reluctant to reveal their capabilities as well as attributes of their upstream SN 

entities (e.g., location, operations cost) as this information is commercially sensitive. Also, the approach adopted 

in practice to configure the SN is different from the approach proposed in this study. The current practice is each 

SN entity selects the upstream SN entities depending on the requirements of downstream SN entities; however, 

this study adopts a reverse-auctioning and bidding strategies based holistic approach to select SN entities from 
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each SN node depending on the requirements of the product-market profile. To overcome this limitation, certain 

data is partly taken from the extant literature, and others are estimated. Furthermore, in order to minimise the 

implications of not having real-life data, scenario analysis and sensitivity analysis are performed to test the 

robustness of the proposed MAOM and to estimate to which SN characteristics that the SN-level performance is 

sensitive.   

The second limitation of this study is, the developed MAOM is not generalised to any SN or a standard product 

structure. SNs are different from one to another in terms of structure depending on the BOM, practices and 

policies. Hence, a single model cannot be developed to account for all such differences. However, for 

demonstration purposes, the proposed MAOM is tested on a variant of a refrigerator product, which could be 

modified to suit other variants of a refrigerator with minimal additional work.  

The third limitation of this study relates to the conditions and constraints which SN entities (modelled as physical 

agents) consider in making their bidding decisions. Physical agents use a Q-table which consists of capacity levels 

and profit ranges to extract knowledge from past bidding experience. In determining the capacity levels, physical 

agents only consider in-house capacity subject to normal working hours. However, physical agents could also bid 

considering a few other options such as outsourcing or using overtime, which are not considered in this study.  

The fourth limitation of this study is about the constraint in relation to selecting physical agents from a SN node 

to satisfy a product-market profile. Candidate physical agents for each product-market profile are selected from 

each SN node through the reverse-auctioning process, given the condition that a physical agent could bid only if 

the total number of units could be supplied. This means the number of units required from a SN node cannot be 

split between several physical agents or multiple sourcing is not possible. Multiple sourcing has not been 

considered in this study as it does not make a significant contribution to the set aim of the study.  

 Thesis Outline 

This thesis has seven chapters: Introduction, Literature Review, Conceptual Framework, Methodology, 

Simulation Results, Discussion and Conclusions. References and appendixes follow these main chapters. 

Chapter 1 gives an overall introduction to the thesis with a brief overview of both opportunities and challenges 

associated with evolving SNs and recognises the SNC decisions in such SN contexts. This is followed by the 
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research problem, research questions and aim and objectives. A brief account of the adopted methodology to solve 

the SNC problem is also presented, followed by the contributions of the study. Finally, limitations of the study 

are acknowledged.   

Chapter 2 of this thesis presents a summary of the current body of knowledge in the domain of SNC with a focus 

on SNC models in particular. This chapter first presents SN decisions that apply at different levels with particular 

attention to SN design decisions and associated challenges in modelling these decisions. The ways in which those 

challenges have been addressed in the literature is dealt with next, while also discussing the limitations of current 

modelling approaches and solution methodologies. SNC decisions are then discussed and compared and 

contrasted with the SN design decisions.  The key elements of past SNC models are then reviewed, summarised 

and analysed under four classification criteria, namely SN characteristics, SNC decisions, SN performance 

measures, modelling approaches, and solution methodologies. Finally, research gaps are identified by evaluating 

and synthesising the contributions of the existing literature under each classification criteria.   

Chapter 3 of this thesis presents the conceptual framework which guides the overall methodological approach 

adopted in this study to deal with SNC decisions.  The proposed conceptual framework consists of three 

components focusing on establishing product-market profiles, generating alternative Pareto-optimal SNCs, and 

scenario-based optimisation. Finally, the proposed approach is compared with the existing approaches in the SNC 

literature.  

Chapter 4 presents the overall methodology employed in achieving the aim of this study. First, the rationale for 

selecting the methodology is discussed, and then the modelling framework used to implement the proposed 

MAOM is presented. The proposed framework consists of four steps: conceptual definition, mathematical 

formulation, computer-based implementation, and model verification and other analysis protocols. Finally, a brief 

account of the case study used in testing the proposed MAOM is presented, followed by simulation experiments 

carried out and the presentation of findings.  

Chapter 5 is devoted to the presentation of simulation results. First, the case study of a refrigerator SN where the 

proposed MAOM has been applied is presented, including the implementation details of the MAOM. Then a 

detailed account of simulation experiments: verification, base-line model, scenario analysis and sensitivity 

analysis are presented followed by the presentation of the simulation results.  
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Chapter 6 presents the discussion of the findings of this study, including an account of how these findings relate 

to those of the comparable previous studies. First, the set-up of the experiment design, along with the key findings 

are presented. Then, the adopted methodological approach including modelling approaches and solution 

methodologies used in this study is discussed and compared with those used in the extant literature.  

Chapter 7 concludes the thesis summarising the research effort and findings, while providing some concluding 

remarks on the research questions addressed, followed by an account of the contributions and limitations of this 

study, as well as with future research directions. 
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 LITERATURE REVIEW 

 Introduction 

This chapter presents the current body of knowledge in the domain of SNC literature with a particular focus on 

SNC models. Initially, relevant literature was identified through a structured literature search, and then that 

literature was summarised, evaluated and synthesised to identify the research gaps.  

Section 2.2 of this chapter presents an overview of SN decisions at the different planning levels. Section 2.3 draws 

attention to SN design decisions and associated research challenges in the context of evolving SNs. Section 2.4 

contains a brief account of existing SN design models and their limitations in relation to addressing practical 

needs. Section 2.5 contrasts and compares SNC decisions against SN design decisions. It is followed by Section 

2.6, which summarises, evaluates and collates SNC models according to a proposed classification. An overall 

summary of the literature is presented in Section 2.7, and key research gaps are presented in Section 2.8. Finally, 

Section 2.9 summarises the chapter.  

 Supply network decisions  

SN decisions are often considered at strategic, tactical and operational planning levels depending on the enduring 

time horizon of such decisions and the extent of their influence on SN performance (Schmidt & Wilhelm 2000). 

The strategic level decisions, called long-term decisions, hold for a considerably long period (typically three to 

five years), which has a significant impact on the overall SN performance and creates a considerable impact on 

other planning-level decisions (Farahani et al. 2014). Typical strategic-level decisions include: determining the 

number of SN facilities to be set up, including their locations and capacities; identifying the supplier base; and 

deciding on appropriate technologies to be used (Farahani et al. 2014; Sahebi, Nickel & Ashayeri 2014; Melo, 

Nickel & Saldanha-Da-Gama 2009). Tactical level decisions, called medium-term decisions, endure for a 

relatively shorter period than strategic decisions (typically six months to three years) and deal with aspects such 

as inventory policy and controlling parameters; equipment/machinery upgrades; and production and distribution 

planning (Farahani et al. 2014; Sahebi, Nickel & Ashayeri 2014). However, depending on the circumstances that 

apply to each business organisation or the context in which they operate, a particular strategic decision of one 
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organisation could be a tactical decision for another organisation (Bashiri, Badri & Talebi 2012). Operational level 

decisions, called short-term decisions, are made quite frequently, usually on a daily, weekly or monthly basis. 

Examples of decisions taken at the operational level include vehicle routing, operations scheduling and workforce 

assignment (Farahani et al. 2014; Min & Zhou 2002; Schmidt & Wilhelm 2000).  

While operational level decisions are supported by commercial software packages such as enterprise resource 

planning, warehouse management systems and transport management systems (Ardalan & Ardalan 2009), most 

of the strategic level decisions are often made based on managerial judgement (Shapiro 2004). However, the need 

for more advanced models that support strategic and tactical level decisions have gained considerable attention 

due to a number of factors such as the high capital investment involved in certain strategic decisions (e.g., locations 

of facilities, adopting new technologies) (Sahebi, Nickel & Ashayeri 2014; Shapiro 2004) and their impact on 

decisions at tactical and operational levels (Farahani et al. 2014; Bashiri, Badri & Talebi 2012). 

 Supply network design decisions and associated research challenges 

SN design decisions are mostly the strategic level decisions that determine the structure of the SN (Melnyk, 

Narasimhan & DeCampos 2014; Ballou 2001). Some of the pertinent questions that need to be answered 

concerning SN design decisions are: how many facilities should be set up; where should those facilities be located; 

what are the suitable and alternative transportation modes to be used (Klibi, Martel & Guitouni 2010). These SN 

design decisions are expected to be effective for a considerable period. However, their potency is increasingly 

challenged by the contingencies of evolving SNs. 

As highlighted in Section 1.2, SNs evolve in structural, spatial and temporal dimensions due to factors such as 

advancements of technology and information systems, as well as changing market conditions and competitive 

dynamics. As a result, SNs grow structurally with an increased number of SN entities in a given SN while dealing 

with complex and distinct product architectures. Also, SNs spread across multiple geographical regions, having 

spatially distributed SN entities. These trends in evolving SNs form a more distributed decision-making context 

having autonomous SN entities with distinct objectives and behaviours. Also, SNs are continuously subject to 

changes due to SN uncertainties and SN dynamics (Garcia & You 2015; Klibi, Martel & Guitouni 2010). 

Accounting for such changes in all three dimensions in the context of modelling SNs is a challenging undertaking.   

Additionally, SN design decisions result in certain levels of SN performance with respect to speed, responsiveness 
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and efficiency through the way the SNs are structured and run. Traditionally, SN design decisions have focused 

on economic objectives such as cost minimisation and profit maximisation. However, changes in product-market 

profile demand the consideration of the multiple and distinct objectives such as speed, responsiveness and 

sustainability (Eskandarpour et al. 2015; Garcia & You 2015), which also helps in competing with other SNs. 

Therefore, the effectiveness of SN design decisions is challenged in such a SN context, particularly in terms of 

achieving SN performance with respect to the expected consumer needs (Oliveira, Lima & Montevechi 2016; 

Gerschberger et al. 2012; Choi, Dooley & Rungtusanatham 2001). 

Accommodating the above-mentioned factors into SN design models helps assess the effectiveness of SN design 

decisions in delivering a superior customer value proposition. Nonetheless, it has been found in the literature that 

SN design models accommodate these aspects at different levels of abstraction and there are a number of 

limitations in the existing SN design models with respect to delivering realistic and meaningful solutions 

(Eskandarpour et al. 2015; Garcia & You 2015; Melnyk, Narasimhan & DeCampos 2013; Klibi, Martel & 

Guitouni 2010). 

 Existing supply network design models and their limitations  

Regardless of the many structural and functional complexities of SNs, the majority of existing SN design models 

are largely simplified, static and deterministic models (Yao & Askin 2019; Behncke, Ehrhardt & Lindemann 

2013). These models consider rather narrowly defined SN structures (i.e., with few echelons) within a confined 

geographical area giving limited attention to global SNs (Yao & Askin 2019; Meixell & Gargeya 2005). In most 

cases, a static SN environment has also been considered with assumptions such as the presence of the same set of 

SN entities throughout the period, without accounting for uncertainties and dynamics caused by disruptions or 

market turbulence. Therefore, these models have been presented in the form of deterministic-analytical with linear 

relationships and a number of assumptions to make the model scalable (Goetschalckx, Vidal & Dogan 2002). 

These deterministic-analytical models have been solved using commercial solvers, exact algorithms, meta-

heuristics and evolutionary algorithms. Practical use of the solutions derived from these deterministic-analytical 

SN models is quite limited as the assumptions made are unrealistic in light of the changing conditions experienced 

by real-world SNs (Afrouzy et al. 2016; Salem & Haouari 2016; Gupta & Maranas 2003).  

This issue has been addressed through stochastic models to a certain degree by modelling uncertainties in multiple 
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ways (Salem & Haouari 2016). Melo, Nickel and Saldanha-Da-Gama (2009) introduced three clusters of 

stochastic models namely: (a) single period planning and using stochastic modelling approaches and solution 

methodologies (e.g., Santoso et al. 2005); (b) multiple time period planning and using deterministic modelling 

approaches and solution methodologies (e.g., Fattahi et al. 2015); and (c) multiple time period planning and using 

stochastic modelling approaches and solution methodologies (e.g., Pasandideh, Niaki & Asadi 2015). According 

to the above classification, studies have dealt with uncertainties pertaining to the SN context by dividing the 

planning horizon into single and multiple periods. Most of the early studies belong to Cluster (a) assuming that 

the same pattern of uncertainty applies over time (Govindan, Fattahi & Keyvanshokooh 2017). Later, Cluster (b) 

studies have become popular in a way that divides the planning horizon into multiple segments. However, most 

recent and a limited number of studies fall into Cluster (c) which have dealt with multi-period planning using 

stochastic modelling approaches and solution methodologies (Govindan, Fattahi & Keyvanshokooh 2017). The 

solution methodologies proposed in these studies are different in terms of the way relevant parameters are 

modelled, and they fall into three categories namely those that: (i) consider the probability distribution of 

parameters (e.g., stochastic programming); (ii) use subjective opinions when no information related to the 

probability distribution is available (e.g., interval-uncertainty modelling, scenario-based approach); and (iii) 

consider a fuzzy decision environment (e.g., fuzzy programming) (Melo, Nickel and Saldanha-Da-Gama 2009; 

Govindan, Fattahi & Keyvanshokooh 2017).  

Even though uncertainties have been incorporated through stochastic models, most of these SN design models 

have adopted centralised decision-making approaches assuming a single decision-maker making the decisions for 

all SN entities/ SN functions in the SN (Qu et al. 2009). Despite the fact that this is suitable in a vertically 

integrated SN context, those SNs which consist of autonomous SN entities, have their own goals, policies and 

practices demand modelling approaches that represent distributed decision-making (Akanle & Zhang 2008). Other 

approaches such as simulation and artificial intelligence-based modelling (e.g., MAS) have been used in handling 

various decision problems in distributed decision-making contexts and a large number of deterministic/stochastic 

variables and their non-linear relationships (Pourhejazy & Kwon, 2016). Meta-heuristics, simulation software 

platforms, general-purpose programming languages are the most popular solution methodologies used in such 

modelling contexts. Meta-heuristics based solution methodologies have been widely used in dealing with 

problems with a large number of variables and in accounting for their non-linear relationships. Simulation 

software platforms and general-purpose programming languages have been used in dealing with simulation 
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models, MASs etc. Additionally, due to the pertinent SN uncertainties and dynamics, SN design models are 

expected to be more robust, resilient and responsive. Although stochastic models have partially addressed this 

requirement, more advanced models are yet to be developed to handle the autonomous and adaptive behaviour of 

SN entities and changing SN conditions (Yao & Askin 2019; Klibi, Martel & Guitouni 2010; Akyuz & Erkan 

2010). Although the application of certain modelling approaches and solution methodologies such as MAS and 

ABM are still at a relatively early stage in terms of delivering fully-developed industry solutions, their 

achievements so far have been impressive in studying more complex phenomena such as population growth, the 

spread of disease, financial markets and traffic systems and their potential contribution can be significant (Mostafa 

et al. 2017; Macal & North, 2010).  

Apart from incorporating the above requirements in terms of modelling SN characteristics, one of the other the 

primary objectives of a SN design model is to structure and run the SN, to deliver superior customer value. In the 

SN literature, consumer requirements have been represented only by volume attributes, paying no attention to 

other equally relevant attributes such as lead-time and WTP price to comprehensively represent the consumer’s 

requirements. Also, most of the SN design models have been developed focusing on economic objectives such as 

cost minimisation or profit maximisation. However, the multiple attributes of product-market profile and 

associated changes demand the consideration of multiple performance objectives such as responsiveness and 

sustainability (Eskandarpour et al. 2015; Garcia & You 2015).  

In summary, the extant literature highlights the need for developing SN design models incorporating more realistic 

SN characteristics in terms of structural, spatial and temporal dimensions with particular attention to the 

autonomous decision-making of SN entities and changing SN conditions (i.e., SN uncertainties and dynamics) 

while achieving SN-level performance to suit product-market profile attributes. In this regard, SNC decisions have 

been identified as an effective way of dealing with these needs with appropriate modelling approaches and solution 

methodologies. 

 Supply network design decisions vs supply network configuration decisions  

As presented in Section 2.2, SN design decisions determine the structure of the SN or the way the SN should be 

organised to deliver the desired consumer requirements. Hence, SN design decisions are expected to be effective 

for a substantial period; however, there are many reasons as to why it may not be the case. As discussed in Section 
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2.3, SNs have been evolving into more distributed and global contexts with the involvement of individual SN 

entities who make their own decisions. In such a SN environment, SN uncertainties and dynamics are unavoidable 

and these make a significant impact on SN-level performance with respect to meeting specific product-market 

profile requirements. For example, certain facilities could shut down permanently due to natural calamities or 

certain suppliers may not be profitable any longer in light of the shifting product-market profiles. Therefore, the 

need for dynamic SN design models or SNC decisions which could cater for changing SN conditions is identified 

as a research need (Melnyk, Narasimhan & DeCampos 2014).    

In the SNC literature, the use of SNC decisions is highlighted mainly from two different perspectives. Some 

studies have claimed that SNC decisions are important in instances where new products are introduced (e.g., 

Graves & William 2005) and the others have emphasised the need for SNC decisions in the face of SN 

uncertainties and SN dynamics (e.g., Xia, Liu & Matsukawa 2014; Wang et al. 2009). Both of these perspectives 

can be addressed by configuring the SN by considering the alternative sourcing options available at each node to 

deliver a given product-market profile.  

Upon identifying the need for considering SNC decisions, the next question is to focus on the way SNs are 

configured or what SNC decisions are to be addressed. The literature converged on the point that the intended 

purpose of SNC is to enhance SN capabilities to be: flexible, by effectively dealing with customised orders; robust, 

by being able to withstand uncertainties in the internal and external environment; and agile, by exploring and 

adopting new business opportunities (Chandra & Grabis 2009a; Lou et al. 2004). However, the same level of 

consensus does not seem to be there in terms of the way SNC is defined or SNC decisions are identified.  The 

term SNC was introduced by Graves and Willems (2005) with the definition of alternative options for 

accomplishing SC functions at each stage and the amount of safety stock to be placed at each node of the SN. A 

number of studies (e.g., Moncayo–Martínez et al. 2011; Nepal, Monplaisir & Famuyiwa 2011; Huang & Qu 2008) 

have since then followed this definition. Zhang et al. (2009) defined SNC as the integration of product, process 

and logistics decisions. However, the most common and widely adopted definition used by researchers, which is 

also adopted by this thesis study, is the alternative arrangements of SN entities, processes and resources when 

there are multiple options available, differentiated by their performance metrics such as cost and lead time 

(Moncayo-Martínez & Recio 2014; Nepal et al. 2011; Akanle & Zhang 2008).  

As per the definitions referred to above and the use of SNC decisions in the literature, SNC can be considered as 
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an effective means of dealing with the changing SN conditions (e.g., uncertainties,  dynamics). Accordingly, 

typical SNC decisions are: from where to source materials/parts/sub-assemblies; where to manufacture/assemble 

products; where to locate storage/distribution facilities; and what transport alternatives to be considered/used. As 

stated earlier in this section, since these SNC decisions are made mainly to deal with changing SN conditions, the 

frequency of making these decisions can not be determined precisely due to the difficulty in the timing of such 

changing SN conditions. It has been found in the literature that certain studies have considered SNC as a strategic 

level decision (Akanle & Zhang 2008; Truong & Azadivar 2005) whereas others have considered it as a tactical 

level decision (Graves & Willems 2005). However, given the facts relating to the evolving nature of the SN 

context and the role of SNC decisions, this study considers SNC decisions fall in between the strategic and tactical 

planning levels.    

 The proposed classification to analyse the existing SNC models 

The aim of this study is to develop a comprehensive approach to support SNC decisions, which is capable of 

generating alternative SNCs to be optimised against a selected set of parameters under a given set of organisational 

and environmental conditions. Therefore, the existing SNC models identified from a structured literature search 

were reviewed to identify the contribution of existing SNC models to address a number of requirements.   

A number of classifications have been proposed in the SN literature to evaluate the models developed to support 

SN decisions (e.g., Govindan, Fattahi & Keyvanshokooh 2017; Mula et al. 2010; Peidro et al. 2009; Huang, Lau 

& Mak 2003; Min & Zhou 2002). Among such classifications, two comprehensive reviews have been adapted in 

this study. Mula et al. (2010) had reviewed models related to production and transportation planning. The proposed 

classification of Mula et al. (2010) included the SC structure (i.e., the overall arrangement of SN nodes), SN 

decision planning level (i.e., strategic, tactical, operational), modelling approach, purpose (i.e., objective/s defined 

in the mathematical model), types of shared information between SN nodes, limitations of the model, the novelty 

in terms of contribution to SN literature and the applications of the proposed model. The review of quantitative 

models used for SC planning under uncertainty by Peidro et al. (2009) used a classification which includes the 

source of SN uncertainty (i.e., demand, process/ manufacturing and supply); SN decision planning level; and the 

modelling approach. 

In this study, a classification to review SNC models was proposed by examing the classifications in the SN 
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literature to identify the strengths and limitations of existing SNC models in catering for the needs of industry 

requirements and achieving improved SN-level performance. Accordingly, the proposed classification to review 

existing SNC models consists of SN characteristics, the type of SNC decisions, SN-level performance metrics, 

modelling approaches and solution methodologies. 

 Supply network characteristics  

Previous studies have dealt with a number of challenges associated with SN decisions which can be discussed in 

terms of the structural, spatial and temporal dimensions as introduced in Section 1.2. In this section, each of these 

dimensions is discussed, investigating to what extent the SN characteristics have been incorporated by the existing 

SNC models.   

Structural dimension: SC structure varies depending on a number of factors such as product architecture, logistics 

network, and the nature of the business context (e.g., service providers) (Montoya-Torres & Ortiz-Vargas 2014). 

Multiple types of SC structure have been identified within classifications reported in the literature. For example, 

Huang, Lau and Mak (2003) identified five types of SC structure: dyadic (i.e., a SC with two nodes which are 

mostly the buyer and vendor), serial (i.e.,  a SC which is a combination of multiple dyadic structures), divergent 

(i.e., each node has at most one predecessor and several successors), convergent (i.e., each node has at least one 

successor and several predecessors) and network (i.e., a combination of convergent and divergent structures in the 

upstream and downstream respectively). Beamon and Chen (2001) proposed four types of SC structures, namely 

convergent, divergent, conjoined and general. There is a minor difference in the two classifications referred to 

above with respect to the term used to refer to SC structures that combine both convergent and divergent structures. 

Huang, Lau and Mak (2003) defined the SC structure, which combines both convergent and divergent structures 

as “network” structure, whereas Beamon and Chen (2001) termed it as the conjoined structure. Apart from that 

Beamon and Chen (2001) proposed “general” as another type of SC structure which is neither strictly convergent, 

divergent, nor conjoined as stated above, however, it had multiple combinations of convergent and divergent 

structures in upstream and downstream of the SN. Considering both these classifications, this study has used types 

of SC structures as shown in Figure 2.1 to review the SNC models in the literature. A given SC structure type is 

further considered in terms of its horizontal structure (i.e., a number of echelons) and vertical structure (i.e., a 

number of nodes in an echelon) (Lambert, Cooper & Pagh 1998). Additionally, the number of product flows, 

consumer regions and SN entities are considered as elements of the structural dimension (Serdarasan 2013; Zhang 
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et al. 2009; Min & Zhou 2002). The analysis of the above dimensions in SNs indicates the complexity of SNs in 

terms of coordination and communication.    

In SNC literature, different SC structures have been considered in the proposed models depending on the research 

problem framed. As listed in Table 2.1, SC structures considered in the SNC models in the literature are mostly 

either convergent or conjoined. Those studies that consider convergent or conjoined SC structures have multi-
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echelon supplier bases (i.e., varying from one to eight). These echelons are responsible for extracting raw material, 

producing parts or components, which then assemble into a final product. The only study that has also accounted 

for a multi-echelon downstream SN is Truong and Azadivar (2005). Apart from the composition of the overall SC 

structure, one other important factor is the size of the SN, which indicates the number of nodes, SN entities and 

product flows in the SC. 

Among all the studies reviewed, the largest upstream SN stage (i.e., supply base) consists of 26 parts/components 

(which represent sourcing nodes) whereas the smallest supply base consists of one node. The largest structure 

dealt with in SNC models has 118 SN entities. The highest number of consumer regions that have been dealt with 

in previous studies is six. The product-market profiles of those consumer regions are represented in terms of the 

type of the product (i.e., product variant) and volume (i.e., the total number of units required). A few studies have 

considered multiple product types, as well.  

Spatial dimension: Over the past several decades, SNs have evolved in a way that the constituent SN entities are 

spread across many geographical regions around the world (Tjahjono 2017; Mourtzis & Doukas 2012). 

Globalisation of SNs is associated with many advantages such as lower manufacturing costs, tariff concessions, 

access to technology and other free-trade facilities, which offer opportunities to procure and produce 

components/products more competitively (Tjahjono, 2017; Rauch et al. 2015; Mourtzis & Doukas 2012). Despite 

such opportunities, there are also certain risks associated with  globalised SCs as the entities and the connections 

between these entities are prone to various forms of disruptions such as those caused by bankruptcies, breakdowns, 

macroeconomic and political changes and disasters (Manuj & Mentzer 2008). Another major challenge associated 

with global SCs is managing the logistics functions with the cost and time involved in long-distance transportation 

and storing of goods, which have a direct impact on SN performance in terms of efficiency, responsiveness and 

speed.  However, SNC literature has emphasised that global SCs are benefited by having alternative suppliers 

dispersed across the world in the face of disruptions, as well (Aguila & ElMaraghy 2018). Even though the SN 

literature has identified that having developed SNC models to accommodate the spatial dimension is one of the 

most important aspects, the spatial dimension has not been incorporated into SNC models directly.
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Table 2.1: Structural dimension of SCs  

Reference Overall SC 

structure 

Horizontal Vertical 
No.of 

SN 

entities 

No. of 

consumer 

regions 

No. of product 

variants 

handled 

No.of tiers in each stage No.of nodes in each stage 

U M D U M D 

Akanle & Zhang 2008 Conjoined 3 1 1 12 2 2 33 2 2 

Ameri & McArthur 2013 Serial 1 1 - 3 1 - 7 - 3 

Fujita et al. 2013 Conjoined 1 1 1 3 1 3 10 4 4 

Graves & Willems 2005 Conjoined 3 1 1 13 1 2 31 2 2 

Greco et al. 2013 Convergent 1 1 - 2 1 - 4 - 1 

Huang et al. 2005 Conjoined 3 1 1 12 2 2 33 2 2 

Huang & Qu 2008 Conjoined 3 1 1 13 1 1 28 2 2 

Jiao, You & Kumar 2006 Convergent 1 1 - 3 1 - 9 4 1 

Jiang et al. 2018 Conjoined 6 1 1 23 1 1 88 4 3 

Lou, Chen & Ai 2004 Convergent 1 1 - 1 1 - 4 - 1 

Li & Womer 2008 Conjoined 3 1 1 13 1 2 31 2 2 

Mastrocinque et al. 2013 Conjoined 5 1 1 23 1 1 105 4 3 

Moncayo-Martínez & Zhang 2011 Conjoined 6 1 1 23 1 1 105 4 3 

Moncayo-Martínez &  Zhang 2013 Convergent 5 1 - 26 3 - 109 0 1 

Moncayo-Martínez & Recio 2014 Conjoined 3 1 1 13 1 2 33 2 2 

Moncayo–Martínez et al. 2016 Convergent 8 1 1 26 2 1 74 1 1 

Moncayo–Martínez et al. 2016 Conjoined 6 1 1 23 1 1 105 4 3 

Note: U – upstream stage; M – midstream stage; D – downstream stage  
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Table 2.1: Structural dimension of SCs (continued) 

Reference 
Overall SC 

structure 

Horizontal Vertical No.of 

SN 

entities 

No. of 

consumer 

regions 

No. of product 

variants 

handled 

No.of tiers in each stage No.of nodes in each stage 

U M D U M D 

Nepal et al. 2011 Convergent 4 1 - 21 1 - 40 - 1 

Piramuthu 2005a Convergent 1 1 - 1 1 - 5 - 1 

Piramuthu 2005b Convergent 1 1 - 1 1 - 4 - 1 

Qu et al. 2009 Convergent 3 1 1 13 1 - 33 -  

Qu et al. 2010 Convergent 3 1 1 11 1 2 25 1 1 

Qu et al. 2010 Convergent 2 1 - - - - - - 1 

Ruiqing et al. 2014 Conjoined 3 1 1 7 1 1 28 2 1 

Sheremetov & Rocha-Mier 2008 Conjoined 1 1 - 3 1 - 3 - 2 

Shukla & Kiridena 2016 Conjoined 3 1 1 13 1  31 1 2 

Truong & Azadivar 2005 Conjoined 6 1 2 19 1 2 72 6 1 

Vanteddu, Chinnam & Gushikin 2011  Convergent 1 1 - 1 1 - 3 - 1 

Wang et al. 2009 Serial 2 1 - 2 1 - - - 1 

Wang et al 2016 Conjoined 2 1 1 11 1 1 118 - 3 

Wang & Shu 2007 Conjoined 3 1 1 13 1 2 31 2 2 

Yang et al. 2015 Convergent 3 1 - 13 1 - - 1 - 

Yuce et al. 2014 Conjoined 5 1 1 18 1 4 105 4 3 

Zhang et al. 2009 Conjoined 2 1 1 6 1 4 19 4 1 

Zhang et al. 2017 Convergent 1 1  3 1 - 31 - 1 

Note: U – upstream stage; M – midstream stage; D – downstream stage 
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In configuring the SN, the majority of existing SNC models have considered SN entities with two attributes, 

namely, operations cost and operations time. Although travel distance and time vary depending on the selected 

upstream/downstream SN entities, studies have included transportation cost into operations cost, assuming a fixed 

amount (distance). This assumption indicates a somewhat unrealistic situation as transportation cost and time vary 

significantly depending on the geographical location of the selected upstream/downstream SN entity. The only 

study which has considered the spatial dimension to some extent is Shukla and Kiridena (2016) accounting for 

the social cost of transportation-related carbon-dioxide emission between SN entities. Even though this study 

explicitly accounts for the impact of the spatial dimension in terms of the sustainability aspect, the effect of spatial 

dimension on other SN performance parameters such as efficiency and speed have not been considered. 

Temporal dimension: Changing conditions in SNs overtime are considered as the temporal dimension in this 

study, which have been discussed in the literature under the topics of SN uncertainties and SN dynamics 

(Shishebori & Babadi 2018; Salem & Haouari 2017; Dai & Li 2017; Peidro et al. 2009). Uncertainties pertaining 

to the SN context have been identified through a number of classifications. For example, Salem and Haouari 

(2017) presented SN uncertainties in terms of general environment uncertainties, industry uncertainties and firm-

specific uncertainties.  

Dai and Li (2017) classified uncertainties into environmental (which includes supply and demand) and system 

(e.g., production, distribution) related aspects. Peidro et al. (2009) categorised SN uncertainties into demand, 

process/manufacturing and supply. Irrespective of the way SN uncertainties were classified, these studies have 

reviewed the SN uncertainties pertaining to the entire SN. SN dynamics have also been identified and researched 

in the SN literature as changes to SN structure overtime with entities entering or leaving the SN as a result of 

disruptions and technological advancement, shifting product-market profiles, mergers and acquisition of SN 

entities (Choi, Dooley & Rungtusanatham 2001).  

An essential SN design (and SNC) requirement stated in the SN literature is to build the SN capacity to be robust 

and resilient in the face of uncertainties and dynamics (Klibi, Martel & Guitouni 2010). However, only a few 

studies have explicitly accounted for these aspects. Even though existing models have considered one or both of 

the operations costs and operations time as attributes of SN entities, they have been assumed to remain the same 

over time. The conventional approach used with these SNC models is to configure the SN considering static and 

deterministic SN contexts. However, typically, SN entities are autonomous business organisations with distinct 
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attributes, characteristics and behaviours. They interact with other SN entities and make decisions such as adopting 

new technologies, expanding facility capacities and changing business models to cope with challenges such as 

market reactions or competitor manoeuvres (Yao & Askin 2019; Swaminathan, Smith & Sadeh 1998). This could 

change the SN entity attributes and behaviour over time, resulting in different levels of performance at the whole 

of SN level.  

A few studies have attempted to model the stochastic nature of SN entities. Wang and Shu (2007) modelled the 

SNC problem considering a scenario where each SN node has multiple SN entities that differ in terms of their 

operations costs and lead-times. They have accounted for uncertainty in relation to lead-times of SN entities and 

consumer demand using a fuzzy set modelling approach. Greco et al. (2013) adopted Bayesian decision networks 

and modelled the SN as a tree using MAS where agents represent SN entities. The entire SN was configured by 

the successful creation of sub-chains (which consist of upstream SN entities) by each SN entity considering both 

the reputation and selling price for the product. Reputation of a SN entity was determined by analysing the 

previous experience of collaborations with trading partners. Selling price was determined by each agent based on 

both the expected minimum profit and the past experience in bidding. Depending on the success or failure of the 

previous bid, the agent increases (subject to the number of previous successful bids) or decreases (subject to the 

cost of production) the selling price. Ruiqing, Tang and Matsukawa (2014) developed a dynamic programming 

model and is the only study which accounted for SN disruptions in the context of making SNC decisions. In their 

approach, first, the SNC was developed in a static manner, and then the impact of SN disruptions to SNC decisions 

was tested using scenario analysis with a  given probability of holding the functioning of SN entities at each stage.  

Additionally, to uncertainties related to SN entity attributes, existing SNC models have considered uncertainties 

in consumer requirements, modelling the product-market profiles with uncertainties related to one or more 

attributes of volume (i.e., the number of unit required), lead-time and WTP price. For example, Graves and 

Williams (2005) have modelled the product-market profile using the volume attribute and assumed it follows the 

normal distribution. In this study, multiple studies have been reviewed and analysed based on the nature of the 

attributes of the product-market profiles used. Accordingly, two types of product-market profiles were identified: 

(i) static, i.e., attributes of product-market profile remain the same over an extended period; (ii) dynamic, i.e., 

attributes of the product-market profile are changing over time. The distribution of SNC models concerning the 

type (i.e., static or dynamic) and attributes (i.e., volume, lead-time and WTP price) of the product-market profile 

is shown in Figure 2.2. There are 15 studies out of the 35 which have dealt with static product-market profiles 
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whereas 10 studies have dealt with dynamic product-market profiles. Jiao, You and Kumar (2006) and Zhang et 

al. (2009) had considered a static product-market profile with all three product-market profile attributes. There 

are no studies that have used dynamic product-market profiles accounting for all three attributes.  

 Supply network configuration decisions  

SNC decisions addressed by each of the 35 studies reviewed are listed in Table 2.2. The entries show that most of 

the proposed models (17 out of 35) have dealt with the three key decisions: supplier selection, determination of 

facility locations, and the choice of transport mode(s). For example, the supplier selection decision deals with the 

selection of the 1st tier suppliers, determination of facility location deals with the selection of location to 

manufacture products and the choice of transportation mode deals with the selection of the mode of transportation 

to dispatch products to consumers. Additionally, the three key decisions mentioned above, Truong and Azadivar 

(2005), however, have also considered production policy (make-to-order or make-to-stock) and selection of 

facilities considering their capacity. There are other studies (e.g., Moncayo–Martínez & Zhang 2013; Graves & 

Willems 2005; Huang et al. 2005) that have considered inventory planning as one of the SNC decisions, indicating 

that some authors have incorporated both strategic and tactical level decisions into SNC decisions. This analysis 

indicates that the type of SNC decisions considered in SNC models varies depending on the definitions for SNC 

adopted by the study and the perspective of the authors. 

Eight studies have dealt with only the supplier selection decision considering simple SCs consisting of single 

echelon supply and manufacturing stages. For example, Piramuthu (2005b) has considered a supplier selection 

decision which was tested on a convergent SC with three nodes in a single echelon supply stage and one node in 
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the manufacturing stage. Despite the fact that these studies have used simple SC structures, they have made distinct 

contributions to the SNC literature. For example, both Piramuthu (2005b) and Lou, Chen and Ai (2004) accounted 

Table 2.2: SNC decisions 

References 
SNC decisions 

SS FL TM IP CP PP 

Akanle & Zhang 2008 × × ×    

Ameri & McArthur 2013 ×      

Fujita et al. 2013 × ×     

Graves & Willems 2005 × × × ×   

Greco et al. 2013 ×      

Huang, Zhang & Liang 2005 × × × ×   

Huang & Qu 2008 × × ×    

Jiao, You & Kumar 2006 ×      

Jiang et al. 2018 × ×     

Lou, Chen & Ai 2004 ×      

Li & Womer 2008 × × ×    

Mastrocinque et al. 2013 × × ×    

Moncayo-Martínez & Zhang 2011 × × ×    

Moncayo-Martínez &  Zhang 2013 × × × ×   

Moncayo-Martínez & Recio 2014 × × ×    

Moncayo–Martínez et al. 2016 × × × ×   

Moncayo–Martínez et al. 2016 × × ×    

Nepal et al. 2011 × ×     

Piramuthu 2005a × ×     

Piramuthu 2005b ×      

Qu et al. 2009 × × ×    

Qu et al. 2010 × × ×    

Qu et al. 2010 × ×     

Ruiqing et al. 2014 × × ×    

Sheremetov & Rocha-Mier 2008 ×      

Shukla & Kiridena 2016 × ×     

Truong & Azadivar 2005 × × ×  × × 

Vanteddu, Chinnam & Gushikin 2011  ×      

Wang et al. 2009 ×      

Wang et al 2016 × ×     

Wang & Shu 2007 × × × ×   

Yang et al. 2015 × ×     

Yuce et al. 2014 × × ×    

Zhang et al. 2009 × ×     

Zhang et al. 2017 × ×     

  SS – Supplier selection; FL – Facility location selection; TM – Transport mode selection; 

IP – Inventory planning; CP – Capacity planning; PP – Production planning 
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for product-market profiles with three attributes volume, lead-time and WTP price (see Section 2.6.1).  

Additionally, Lou, Chen and Ai (2004) selected multiple SN entities (i.e., adopting multiple sourcing strategies) 

to supply the same component/parts aimed at finding the best coalition between SN entities (see Section 2.6.4). 

Other studies such as Ameri and McArthur (2013) and Jiao, You and Kumar (2006) have contributed to the SNC 

literature by adopting a distributed decision-making approach using MAS. Furthermore, Jiao, You and Kumar 

(2006) employed bidding and negotiation protocols in handling SNC decisions. 

Those studies which dealt with the three most common decisions (i.e., supplier selection, facility location 

selection, transport mode selection) have addressed the SNC problem rather holistically in dealing with large scale 

SC (i.e., SC with more than 100 SN entities) structures. The other distinct feature in those studies is the use of 

combinatorial optimisation based modelling approaches and meta-heuristics as the solution methodology (see 

Section 2.6.4). 

 Supply network performance measures 

There are a number of performance measures that have been reported in the SN literature both at SN entity-level 

(e.g., Akyuz & Erkan 2010) and the whole of the SN-level (e.g., Klibi, Martel & Guitouni 2010). SN entities are 

independent business organisations with their own goals, hence, each has its performance measures. However, the 

performance measures applicable at the SN-level for a target product-market profile are quite common. With the 

broader goals of improved profitability and market share, a given SN is expected to outperform other competing 

SNs in terms of speed, efficiency and responsiveness (Ketchen Jr et al. 2008).  

Table 2.3 lists the SN-level performance measure(s) that have been considered in SNC literature, these include 

minimising SN cost, lead-time and energy consumption, as well as maximising the compatibility index which is 

a measure of compatibility between SN entities in terms of structural (e.g., cultural) and managerial (e.g., strategic) 

goals and financial (e.g., profit margin) aspects. 

Close examination of SN costs reveals three key constituent elements, namely, cost of goods sold (COGS), 

distribution cost and inventory cost. COGS is defined as the direct costs related to the production of goods which 
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include raw material cost, and other direct (value-adding) costs incurred in manufacturing (i.e., operations cost). 

The distribution cost is usually explicitly accounted only at the distribution stage in relation to the transportation 

Table 2.3: SN performance metrics 

References Cost Time 
Compatibility 

index 

Energy 

consumption 

Akanle & Zhang 2008 ×    

Ameri & McArthur 2013 ×    

Fujita et al. 2013 ×    

Graves & Willems 2005 ×    

Greco et al. 2013 ×    

Huang et al. 2005 ×    

Huang & Qu 2008 ×    

Jio, You & Kumar 2006 ×    

Jiang et al. 2018 × ×   

Lou, Chen & Ai 2004 ×    

Li & Womer 2008 ×    

Mastrocinque et al. 2013 × ×   

Moncayo-Martínez & Zhang 2011 × ×   

Moncayo-Martínez &  Zhang 2013 × ×   

Moncayo-Martínez & Recio 2014 × ×   

Moncayo–Martínez et al. 2016 × ×   

Moncayo–Martínez et al. 2016 × ×   

Nepal et al. 2011 ×  ×  

Piramuthu 2005a ×    

Piramuthu 2005b ×    

Qu et al. 2009 ×    

Qu et al. 2010 × ×   

Qu et al. 2010 ×    

Ruiqing et al. 2014 ×    

Sheremetov & Rocha-Mier 2008 ×    

Shukla & Kiridena 2016 ×   × 

Truong & Azadivar 2005 ×    

Vanteddu, Chinnam & Gushikin 2011  ×    

Wang et al. 2009 ×    

Wang et al 2016 ×    

Wang & Shu 2007 ×    

Yang et al. 2015 × ×   

Yuce et al. 2014 × ×   

Zhang et al. 2009 ×    

Zhang et al. 2017 × ×  × 
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of finished goods from manufacturer to consumer, not having considered the transportation cost between other 

SN stages. In many cases, inventory cost comprises of the holding cost only. Accordingly, the studies are grouped 

into three categories based on cost elements considered: (i) COGS only (e.g., Nepal et al., 2011); (ii) COGS and 

the distribution cost (e.g., Moncayo-Martínez & Zhang 2013; Moncayo-Martínez & Zhang 2011; Akanle & Zhang 

2008); (iii) COGS, distribution and inventory cost (e.g., Huang, Zhang & Liang 2005; Graves & Willems 2005). 

These cost elements also indicate the characteristics of the relevant SC structure, as mentioned in Section 2.8.1. 

For example, those studies with convergent SC structures have considered only COGS. 

Lead-time is defined as the lapsed time between the time when an order is placed and when it is actually available 

for satisfying the customer demand (Zheng et al. 2019). In the SNC literature, lead-time of an individual SN entity 

is modelled in a way that assumes the delivery lead-time of supplying a particular component to its immediate 

down-stream operation is fixed regardless of whichever optional down-stream SN entity is considered (Akanle & 

Zhang 2008). 

As given in Table 2.3, all studies have accounted for SN cost and 12 studies have considered both SN cost and 

lead-time. Additionally, Nepal, Monplaisir and Famuyiwa (2011) have considered the compatibility of firms 

represented by the cultural alignment, information sharing, and cooperation. Shukla and Kiridena (2016) and 

Zhang et al. (2017) are the only studies that have also considered a sustainability measure in terms of energy 

consumption.  

 Modelling approaches and solution methodologies 

In general, modelling approaches are selected based on a number of factors such as the type and number of 

variables required to model the problem at hand; the relevant parameters and their nature; the number of 

objective(s) to be achieved; and the computational efficiency with which the model can be run considering the 

scale of the problem and the nature of the variables and parameters involved (Sahebi et al. 2014; Barbati, Bruno 

& Genovese 2012). Solution methodologies explain the methods used to solve the models concerned in arriving 

at a solution while dealing with the computational complexity and the quality of the solution obtained (Barbati, 

Bruno & Genovese 2012).  

Many modelling approaches and solution methodologies have been used in the SN literature to deal with SN 

decisions. A number of classifications have been used in the SN literature to evaluate the range of modelling 
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approaches available against the criteria referred to above. Beamon (1998) classified the modelling approaches 

used in SN design models into deterministic-analytical, stochastic-analytical, economic and simulation. This 

classification focuses on the types of quantitative models, considering the nature of the input (i.e., parameters), 

the objective of the modelling approach and the nature of the solution. However, this classification did not consider 

the more advanced modelling approaches which are currently in use. Giannocaro and Pontrandolfo (2003) 

classified models in terms of conceptual, analytical, artificial intelligence-based, and simulation. This 

classification has covered the modelling approaches used in both qualitative and quantitative SN contexts. 

Although this classification did not pay particular attention to the nature of the parameters involved, compared to 

Beamon (1998), more focus was given to the nature of the solution obtained while also accounting for more recent 

modelling approaches. This classification has been modified by Peidro et al. (2009) with a particular focus on the 

quantitative context by introducing hybrid modelling approaches in which a combination of many modelling 

approaches are involved. Having considered all these classifications, this study proposes a classification schema 

to review SNC models that considers only quantitative modelling approaches as per the aim of this study. 

Accordingly, this study clusters the modelling approaches used in SNC models into deterministic-analytical (i.e., 

parameters are known and specified) (DE), stochastic-analytical (i.e., at least one parameter is unknown but 

follows a certain probabilistic distribution) (ST), simulation (SI) and artificial intelligence-based (AI). Table 2.4 

shows the modelling approach adopted by each of the studies.  

Solution methodologies explain the methods used to solve the models concerned in arriving at a solution. There 

are a number of classifications for solution methodologies proposed in the SN literature. Melo, Nickel and 

Saldanha-Da-Gama (2009) divided solution methodologies used in the SN literature into exact algorithms and 

heuristics which are solved using general-purpose software and tailored algorithms. This classification has 

covered solution methodologies used in solving a few modelling approaches. In comparison, Govindan, Fattahi 

and Keyvanshokooh (2017) have presented four clusters of solution methodologies used in SN literature under 

uncertainties, they are: exact algorithms, heuristics, meta-heuristics, and commercial solvers. This classification 

also has not considered solution methodologies for all of the modelling approaches listed above. Considering these 

classifications and solution methodologies that have been used in the SNC literature, this study grouped solution 

methodologies into exact algorithms (EA), meta-heuristics (MH), software platforms (SP), and machine learning 

(ML) clusters. Deterministic models have been solved using both exact algorithms and meta-heuristics, depending 

on the nature and scale of the problem being modelled.  
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Table 2.4: Modelling approaches and solution methodologies used in SNC literature 

Reference 

Modelling approaches 
Name of the modelling 

approach 

Solution methodologies 

Name of the solution methodology 
DE ST AI SI EA MH SP ML 

Akanle & Zhang 2008   ×  Multi-agent system  ×   Genetic Algorithm  

Ameri & McArthur 2013   ×  Multi-agent system   ×  Similarity algorithm 

Fujita et al. 2013 ×  ×  Mixed-integer linear 

programming  
× ×   Simplex Algorithm, Genetic Algorithm 

Graves & Willems 2005 ×    Dynamic programming ×    Dynamic Programming  

Greco et al. 2013   ×  Multi-agent system    × Bayesian Decision Network  

Huang et al. 2005   ×  Evolutionary optimisation  ×   Genetic Algorithm  

Huang & Qu 2008 ×    Analytical target cascading  ×   Genetic Algorithm  

Jio, You & Kumar 2006   ×  Multi-agent system     Bidding (Contract net protocols) 

Jiang et al. 2018   ×  Meta-heuristics optimisation  ×   Bee Algorithm; Simulated Annealing; 

gradient decent  
Lou, Chen & Ai 2004   ×  Multi-agent system   ×  

Bidding (case based contract net 

protocols) 

Li & Womer 2008 ×    Integer programming  ×    Constraint programming  

Mastrocinque et al. 2013 ×  ×  Mixed-integer non-linear 

program  
 ×   Bee Algorithm  

Moncayo-Martínez & Zhang 2011   ×  Meta-heuristics optimisation  ×   Ant Colony Optimisation  

Moncayo-Martínez & Zhang 2013   ×  Meta-heuristics optimisation  ×   Ant Colony Optimisation  

Moncayo-Martínez & Recio 2014   ×  Meta-heuristics optimisation  ×   Ant Colony Optimisation  

Moncayo–Martínez et al. 2016   ×  Meta-heuristics optimisation  ×   Ant Colony Optimisation; Intelligent 

Water Drop  Moncayo–Martínez et al. 2016   ×  Meta-heuristics optimisation  ×   Intelligent Water Drop 

Nepal et al. 2011   ×  Meta-heuristics optimisation  ×   Genetic Algorithm  

Piramuthu 2005a   ×  Multi-agent system    × Decision rules  
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Table 2.4: Modelling approaches and solution methodologies used in SNC literature (continued) 

Reference 
Modelling approaches Name of the modelling 

approach 

Solution methodologies Name of the solution 

methodology DE ST AI SI EA MH SP ML 

Piramuthu 2005b   ×  Multi-agent system    × Decision rules  

Qu et al. 2009 ×    Analytical target cascading  ×   Genetic Algorithm  

Qu et al. 2010 ×    Analytical target cascading  ×   Genetic Algorithm 

Qu et al. 2010 ×    Analytical target cascading  ×   Genetic Algorithm  

Ruiqing et al. 2014 ×    Dynamic programming ×    Dynamic Programming  

Sheremetov & Rocha-Mier 2008   ×  Multi-agent system      Collective intelligence  

Shukla & Kiridena 2016   ×  Multi-agent system   × × Rough Set  

Truong & Azadivar 2005 ×  × × 

Mixed Integer Linear Program, 

Evolutionary algorithm, 

Simulation 

 × ×  
Genetic Algorithm; Discrete 

Event Simulation 

Vanteddu, Chinnam & Gushikin 2011   ×    - -    

Wang et al. 2009   ×  Multi-agent system   ×  Negotiation 

Wang et al 2016 
×    

Mixed-integer non-linear 

Program 

 ×   
Genetic Algorithm  

Wang & Shu 2007   ×  Fuzzy rough set theory  ×   Genetic Algorithm  

Yang et al. 2015 ×    Mixed-integer linear program  ×   Genetic Algorithm  

Yuce et al. 2014   ×  Evolutionary optimisation  ×   Bee Algorithm  

Zhang et al. 2009    × Peri nets   ×  Petri.NET Simulator 

Zhang et al. 2017 ×    Analytical target cascading  ×   Genetic Algorithm  
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AI-based modelling approaches and solution   methodologies have been used in a number of studies, while treating 

the SNC problem as a combinatorial optimisation problem, from the mathematical point of view (Nepal et al. 

2011; Huang et al. 2005). Those studies that consider the SNC problem to be of a combinatorial optimisation type 

have adopted a centralised decision-making approach assuming that a single decision-maker selects the best set 

of SN entities for a given product-market profile. Additionally, the SN context has been assumed to be static and 

deterministic. These models have used evolutionary, and meta-heuristics optimisation solution approaches for 

solving the SNC problem. Genetic algorithm (GA) has been used in many studies, and Ant Colony Optimisation 

(ACO) was the second most popular meta-heuristics reported in the literature. MAS has also been used as an AI-

based modelling approach to model the SNC problems in distributed decision-making environments. These have 

often been implemented on software platforms with communication and coordination mechanisms, as well as 

decision rules.  The commonly used modelling approaches and solution methodologies will be further discussed 

in Section 2.6.4.1. 

From a practical point of view, to arrive at an effective solution for SNC problems, it is required to evaluate the 

SN entity-level decisions at the SN-level, considering the product-market profile attributes. The decisions of SN 

entities can change over time which in turn has an impact on SN-level performance. However, the majority of 

studies have addressed only SN-level decisions adopting a centralised decision-making approach and considering 

the SNC problem to be of a combinatorial optimisation type. A few other studies have attempted to model SN-

level decision-making in a de-centralised manner using MAS and analytical target cascading (ATC) modelling 

approaches. However, this practical context has not been modelled at an adequate level of detail in the SNC 

literature except for a few studies such as Akanle and Zhang (2008) and Sheremetov and Luis (2008) who 

modelled both SN entity-level decisions and SN-level decisions. 

 Widely used modelling approaches and solution methodologies in SNC models  

In this section, the most common modelling approaches and solution methodologies used in the SNC literature 

are discussed. The AI-based modelling approach is the most common modelling approach category in which meta-

heuristic optimisation and MAS have been widely employed. ATC is also a modelling approach which has been 

used in many studies. With respect to solution methodologies, GA and ACO have been used in many studies.  

Each modelling approach and solution methodology has its own distinct advantages and limitations. Meta-
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heuristics and evolutionary algorithms have the capacity to deal with large-scale problems, and are considered as 

computationally efficient techniques. Also, these solution methodologies offer near-optimal solutions. ATC is 

also an effective method in arriving at an optimal solution; yet, is not as efficient in terms of computational 

efficiency. MAS has high computational efficiency and is also a potential approach to model distributed decision-

making contexts with the flexibility to accommodate any solution methodologies depending on the requirement. 

Nonetheless, proper coordination and communication mechanisms have to be implemented to integrate distributed 

autonomous decisions. 

MAS: This approach refers to a collection of agents (self-contained, modular, and uniquely identifiable 

individuals) who independently make decisions co-operating and competing with other agents to achieve 

individual or common goals (Mostafa et al. 2017). The MAS modelling approach has been recognised as an 

approach particularly suitable for complex and dynamic problem contexts. It deals with developing modular 

components (agents) for executing specific and defined sets of tasks in a rather autonomous manner. The salient 

features of the MAS modelling environment are the agent environment; agent attributes and characteristics; and 

the agent architecture (Macal 2016). Agent environment is defined in the literature as the context which is 

considered to fall outside the control of the agent (Van Otterlo 2009; Sutton 1998). Agent characteristics are such 

that they display autonomous and adaptive behaviour (i.e., they independently make their own decisions and 

change their behaviour/decisions upon external influences). This behaviour may take the form of reactive (i.e., 

respond to the external influences through quick decisions) and/or pro-active responses (i.e., take prior initiatives 

to cope with future changes), as well as social (i.e., with other SN entities) interactions (Wooldridge & Jennings 

1995). Agent architecture is the make-up of an agent in terms of modules and the mechanisms through which 

these modules interact with each other (Maes, 1991). Alternatively, agent architecture can be considered as a way 

of implementing the agent attributes and characteristics (Chin et al. 2014). There are a number of agent interaction 

protocols available in the literature such as blackboard systems, contract net, negotiation, and multi-agent belief 

maintenance and market mechanisms (Weiss 1999). These communication protocols are selected and applied to 

suit the type of problem and its context.  

MAS modelling has been used in nine studies in the SNC literature. The majority of such studies (e.g., Ameri & 

McArthur 2013; Greco 2013; Wang et al. 2009; Jiao, You & Kumar 2006; Lou, Chen & Ai 2004) has been 

undertaken in the context of rather narrowly defined SNs with limited SC tiers (mostly upstream of the SC having 
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a maximum of two stages) and simple product structures. Also, many of them have focused on 

coordination/configuration of the entire SN using negotiation protocols (Huang & Qu, 2008). These studies have 

used negotiation protocols such as argumentation-based negotiation (see Wang et al. 2009), contract net protocol 

(CNP) with negotiation (see Jiao, You & Kumar 2006), case-based reasoning with CNP (see Lou, Chen & Ai 

2004). These protocols have their distinct advantages and limitations. CNP is a task sharing method, where nodes 

become a manager or a contractor situationally where managers decompose, announce and allocate tasks, and 

then contractors perform the task (Smith, 1980). Jiao, You and Kumar (2006) introduced an improved version of 

CNP by introducing a multi-contract negotiation process. This study introduces multiple negotiation agents to 

negotiate with multiple SN entities which enhances the efficiency of the negotiation process. The highest utility 

value is used to select candidate SN entities subject to meeting the consumer order requirements. If any of the 

selected SN entities is not compatible with other SN entities in meeting the customer requirements, then the 

negotiation occurs iteratively until meeting the consumer requirements. Lou, Chen and Ai (2004) used case-based 

reasoning with CNP in order to enhance coordination efficiency. This method maintains a database which has the 

history (i.e., information on SN entities to fulfil a given order) of past fulfilled orders (referred to as cases). When 

a new order is received, the requirements of that order are first compared with the cases in the database. Then 

depending on the availability of similar cases in the database, the same set of SN entities are used for the new 

order; otherwise, the steps of the general CNP are followed to find the suitable SN entities. The compatibility of 

these SN entities across the SN is tested using an index for coalition ranking (i.e., SN entities are rated by  the 

number of effective coalitions) subject to the constraints.  

A few studies have used MAS in rather complex SCs with multiple echelons while incorporating certain 

advanced/significant features into the model. Greco et al. (2013) modelled the SC as a tree representing SN entities 

as agents. Once a SN entity in the SC receives an order, that SN entity is responsible for selecting the 

corresponding upstream SN entities (i.e., creating the sub-chain) in order to fulfil the order requirements. For 

example, a SN entity needs to create a sub-chain if that SN entity needs raw material or sub-assemblies to fulfil 

the order requirement. The order is accepted by the SN entity, checking the availability of resources.  If the 

resources are available, then the selling price is decided by considering both the expected minimum profit and the 

past experience in bidding. Depending on the success or failure of the previous bid, the agent increases (subject 

to the number of previous successful bids) or decreases (subject to the cost of production) the selling price. This 

decision-making process is modelled using Bayesian decision networks. Studies of Akanle and Zhang (2008), 
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Shukla and Kiridena (2016) more holistically addressed SNC decisions in the context of multi-tiered SNs. Apart 

from addressing multi-tier SC, Akanle and Zhang (2008) introduced a  coordinated iterative bidding process to 

find an optimal set of SN entities for a given customer order. A set of reserve values were generated using a GA, 

upon which SN entities presented their bids given the condition that a minimum threshold of profit was gained. 

Otherwise, SN entities do not bid for the given customer order. This bidding process was continued for a given 

number of iterations in order to find an optimal set of SN entities. Shukla and Kiridena (2016) introduced multiple 

agents such as data retrieval agent, knowledge acquisition agent, knowledge representation agent etc to make SNC 

decisions. Fuzzy rough sets-based algorithms have been used for knowledge elicitation and representation dealing 

with multiple product variants. Additionally, this is the only study which has considered the spatial dimension to 

account to some extent for the social cost of transportation-related to carbon-dioxide emission between SN 

entities.  

Although these studies contribute to solving SNC problems in a number of ways, most of them have fallen short 

of modelling the autonomous decisions of SN entities at the required level of detail. However, Sheremetov and 

Rocha-Mier (2008) developed a model based on collective intelligence theory by considering autonomous SN 

entity decisions at SN-level to achieve SN-level performance. A reinforcement algorithm is used to model the 

decisions of SN entities and a generalised version of the Q-neutral algorithm is used for SN-level optimisation.  

GA: First introduced by Holland (1975), GA has been extensively used in optimisation-based problem-solving 

applications in areas such as engineering and business (Mirjalili 2019). It is an evolutionary adaptive algorithm 

inspired by the process of natural selection observed in biological systems (Kumar et al. 2010). A chromosome 

represents a candidate solution (i.e., individual) which consists of a series of genes. These genes represent the 

basic characteristics of the candidate solution in the solution space. A fitness value is calculated for each 

chromosome which indicates the degree of “goodness” of the chromosome. A chromosome with high fitness has 

a higher likelihood to yield a good-quality offspring (i.e., a better candidate solution).  GA is a population-based 

evolutionary algorithm which means GA initiates with a population of chromosomes which then subjects to local 

search. The size of the population varies depending on the application (Mahfoud 1994). A new generation of 

individuals (i.e., children population) is created through the three key genetic operators of selection, crossover 

and mutation from the current population (i.e., from parent population). Chromosomes from the parent population 

are selected using roulette wheel selection (Kumar et al. 2010). These evolutionary iterations continue until a 
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defined convergence criterion are met (Davis 1991). This convergence criterion includes the number of function 

evaluations (i.e., computational iterations), the difference between fitness value of two generations of population, 

the predefined value of fitness can also be set by the number of evolution cycles (computational runs), the amount 

of variation of individuals between different generations, or a predefined value of fitness (Chan et al. 2018).  

As Table 2.4 indicates, GA has been used as a solution methodology in a number of SNC models, including  MAS, 

mixed-integer linear/nonlinear programming models, ATC, and fuzzy rough set theory.  Additionally, the role of 

GA in these SNC models is different. Akanle and Zhang (2008) used GA in the proposed multi-agent model to 

tune the control parameters (i.e., a set of virtual prices and profits) and use them as reserve values for bidding to 

select the best set of SN entities minimizing the SN cost.  Fijita et al. (2013) and Huang, Zhang & Liang (2005) 

used GA to solves the SNC problem as a combinatorial optimisation problem dealing with a single objective.   

ACO: This is an optimisation technique introduced in the early 1990s. ACO is especially used in discrete 

optimisation problems (Mullen et al. 2009). This technique is inspired by ants’ behavior in searching for food. 

Ants have the capability of smelling and depositing a chemical substance called pheromone, as a way of 

communicating with each other. Ants move randomly when they leave the nest to forage for food, but when ants 

find a pheromone trail, they decide whether or not to follow it. The probability that an ant selects one path over 

the other is based on the strength of the pheromone smelt on paths. The stronger the pheromone smelt of a path, 

the more likely the ant will select the path. If they decide to do so, they deposit their own pheromone over the 

trail. Over time, the amount of pheromone on a path also evaporates. Before the colony finds the shortest path 

between the nest and the food, ants use all potential paths in equal numbers, depositing pheromone as they travel. 

The ant that takes the shortest path at a time will return to the nest first, with food. The shortest path at that time 

will have the highest pheromone strength because the path has ‘‘fresh’’ pheromone which has not yet evaporated 

and will be more attractive to other ants that look for the food source (Zang, Zhang & Hapeshi 2010; Angus & 

Woodward 2009; Dorigo, Maniezzo & Colorni 1996) 

ACO is also a common solution methodology used within the SNC problem context, which optimises multiple 

objectives in arriving at a SN level solution. Alternative SNCs are generated based on the pre-defined attributes 

of SN entities which means that ACO has been applied in deterministic SN context. However, ACO based solution 

methodologies have dealt with large scale SNs (i.e., SNs with more than 100 SN entities) effectively generating 

alternative optimal SNCs within a reasonable computational time.  
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ATC: This is a hierarchical, decomposition-based optimisation method (Kim 2001). The first step of ATC is 

breaking a system (e.g., SN) into hierarchies (e.g., SN echelons) which has ATC elements (e.g., SN nodes) and 

the second step is to identify the key links between ATC elements in the hierarchy. Key links are those variables 

shared by two or more elements (such as lead-time and cost in the context of SNC) in the ATC model and should 

be kept consistent during the optimisation phase (Allison et al. 2005). Key links include responses and linking 

variables. Responses are the variables shared by parent and child elements vertically in the ATC. The third step 

of an ATC analysis is to formulate the local optimisation problems for each element in the ATC. Deviations of 

responses and linking variables are included in the objective function for minimization of an element (Allison et 

al. 2005). These deviations are reduced through each iteration of cascading, eventually becoming acceptable 

according to the given tolerances. 

ATC follows a decentralized decision-making approach where a given SN entity has the decision-making 

autonomy to configure the upstream stage (Huang & Qu 2008). GA has been used in solving the ATC model to 

take both SN entity decisions and SN level configuration decisions. However, ATC is capable of dealing with 

only convergent SCs and only with one objective (Huang & Qu 2008).  

 Literature review summary 

Among the available definitions of SNC the most common one found in the literature is: SNC is alternative 

arrangements of SN entities, processes and resources differentiated by their performance metrics such as cost and 

lead-time when multiple options are available. Extant SNC literature was reviewed and presented using the 

classification consisting of  SN characteristics, SNC decisions, SN performance measures, modelling approaches 

and solution methodologies.  

SN characteristics were discussed under structural, spatial and temporal dimensions. Most of the structures 

considered in the SNC models are either convergent or conjoined. Even though such structures consider multiple 

echelons in upstream, downstream has not been treated as such. A considerable number of the models available 

dealt with SCs with over 20 different SN nodes (e.g., raw material, part/component/subassemblies etc). The total 

number of SN entities considered ranged from less than 30 in the majority of studies to more than 100 in a few 

studies. The maximum number of consumer regions considered was six. Furthermore, all studies were limited to 

a single product platform; however, a number of product variants (maximum is four) have been considered. 



42 

 

Although the structural dimension was modelled to some extent in SNC models, both the spatial dimension and 

temporal dimension were poorly addressed. Most of the studies had configured the SN based on two attributes 

(i.e., operations cost and operations lead-time) of SN entities, and these attributes were assumed to remain the 

same over time. This indicates the lack of attention to the impact of uncertainties pertaining to those attributes. 

Furthermore, the operations cost attribute of each SN entity was calculated, taking into account one or more of 

the constituent components, COGS, inventory cost and distribution cost. Except at the distribution stage, 

transportation cost between other SN stages was not considered. However, uncertainties related to the product-

market profile has been accounted for in most of the models but considering the volume attribute only. 

Most of the studies had dealt with the three key SNC decisions: supplier selection, the determination of facility 

locations and the choice of transport modes. Additionally, a few studies had also dealt with inventory planning 

and capacity planning decisions. SN cost was the only performance metric which had been optimised in the 

context of SNC decisions. The majority of SNC models proposed in the literature had focused on a single objective 

(i.e., SN cost), and 12 studies out of 35 considered two objectives, including SN costs. Among the multi-objective 

based studies, the majority accounted for the cost and lead-time, whereas a few studies also considered the 

compatibility index between SN entities and energy consumption.  

The majority of the studies had formulated the SNC problem as a combinatorial optimisation problem (adopting 

a centralised decision-making approach). It solved using meta-heuristic techniques (e.g., GA, ACO), assuming 

that one central decision-maker selects the best set of SN entities (from all SN nodes) to achieve expected SN-

level performance. However, a few other studies had attempted to model SN-level decision-making adopting a 

de-centralised approach. For example, studies which used ATC had adopted a de-centralised decision-making 

approach by assigning the SN entity selection decision to SN stages. A few studies had attempted to integrate both 

SN entity-level decisions and SN-level decisions. Those studies, using MAS as a modelling approach, attempted 

to accommodate the autonomous decisions of SN entities. Despite certain limitations, those models have made 

distinct contributions to the literature. For example, MAS based models applied on small-scale problems (i.e., 

simplified SN structures); however, they have also made unique contributions from other perspectives (e.g., 

dealing with multiple product variants, modelling the adaptive behaviour of SN entities, employing iterative 

bidding mechanisms), which may better reflect industry practice.  
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 Key research gaps in the SNC literature 

Research efforts that incorporate SN characteristics (in terms of structural, spatial and temporal) into the models 

supporting SNC decisions can deliver more practically useful results.  Although the structural dimension is 

adequately incorporated into existing SNC models, the spatial and temporal dimensions of SNs are under-

researched. This literature review further established the need for modelling the distinct attributes of SN entities 

to achieve a more realistic representation of SNs, as each SN entity can be quite unique in terms of the decision-

making style adopted, strategic goals pursued and the organisational practices in place. More importantly, 

changing SN conditions (e.g., uncertainties and dynamics) have an impact on the performance of SN entities 

which in turn make an impact on the overall SN-level performance. However, these aspects have not been 

incorporated into the majority of existing SNC models.  Therefore, the need was identified for modelling a multi-

stage, multi-echelon SN consisting of geographically dispersed autonomous SN entities catering to distinct 

product-market profiles. 

SNs compete with other SNs in terms of offering a superior customer value proposition to sustain their 

competitiveness in a changing business context. Therefore, addressing the varied and often changing product-

market profiles is another crucial aspect which needs to be incorporated into SNC models. However, there are 

many limitations in modelling product-market profiles in the existing SNC literature, which include inadequate 

representation of the realistic SN conditions, as well as consumer requirements. The product-market profile is 

mostly specified only by the volume attribute, giving no attention to the characteristics of its multiple attributes, 

each with a varying and changing nature. Additionally, setting up the expected SN performance in alignment with 

the attributes of the product-market profile is identified as another important aspect in SNC literature. 

In conclusion, since distinct and dynamic behaviour of individual SN entities can create complex aggregate 

behaviour at the SN level, to arrive at an optimal solution for a given SNC problem, both the SN entity-level 

(local) and SN-level (global) decisions need to be aligned. However, the majority of studies holistically addressed 

the key SN decisions such as supplier selection, facility location selection and transport mode selection with 

limited attention to the impact of the individual behaviour of SN entities. In most cases, SNC problems are 

considered to be of combinatorial optimisation type aimed at finding optimal SNC(s) based on the desired SN 

entity attributes. As such, researchers have often used meta-heuristic approaches for solving SNC problems. The 



44 

 

challenge of integrating both SN entity-level decisions and SN-level decisions demands solution approaches that 

extend beyond the realm of solely simulation-based numerical modelling and optimisation (Barbati, Bruno & 

Genovese 2012). 

 Chapter summary 

SNC as a research area is still in the early stages of its development thus drawing the attention of both researchers 

and practitioners, particularly in relation to its potential for supporting SNC decisions towards sustaining 

competitiveness in dynamic business environments. In this chapter, with the use of the proposed classification, 

SNC literature was reviewed under the topics of SN characteristics, SNC decisions, SN performance measures, 

modelling approaches and solution methodologies.  

The main research gap in the SNC literature is the lack of the required representation of SN characteristics, 

especially in terms of spatial and temporal dimensions, in modelling the SNC problem. Even though the unique 

attributes of SN entities can make a significant impact on the SN-level performance, the majority of studies have 

not accounted for these aspects in SNC models. Most of the existing SNC models have adopted centralised 

decision-making approaches to configure the SN by finding an optimal SNC(s) based on the desired SN entity 

attributes. The major limitation of this approach is that it is not able to accommodate the autonomous decisions 

of each SN entity and evaluate their effects at the SN-level. Therefore, lack of using suitable modelling approaches 

and solution methodologies for developing SNC models for supporting autonomous decisions of SN entities and 

methods to configure the SN on a needs basis have been identified as an important area of research.  

The two key aspects that require particular attention when modelling product-market profiles are the 

comprehensive representation of consumer requirements using multiple attributes and accounting for the varied 

and changing nature of those attributes across different geographical regions. The majority of the SNC literature 

modelled consumer requirements only in terms of volume; however, there are a number of other attributes such 

as lead time and price which could be used in capturing the realistic nature of consumer requirements. Another 

important requirement in relation to meeting consumer requirements is by setting up SN-level performance 

aligning with the product-market attributes.   
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 CONCEPTUAL FRAMEWORK 

 Introduction 

As presented in Chapter 2, key research gaps identified in this study inform the need of incorporating SN 

characteristics and the autonomous behaviour of SN entities in SNC models to achieve expected SN-level 

performance catering for diverse consumer requirements. Accordingly, this study identifies three key areas for 

particular attention in developing SNC models. This chapter presents the overall conceptual framework that 

guided the development of the proposed modelling approach. The conceptual framework consists of three 

components which represent the key areas that need to be addressed to achieve the aim of this study. These three 

components are individually discussed in the sub-sections in Section 3.2. Finally, the chapter summary is 

presented in Section 3.3.  

 The proposed conceptual framework   

The three components of the proposed conceptual framework are as depicted in Figure 3.1 deal with: 

(i) Establishing the product-market profiles representing different consumer regions;  

(ii) Generating alternative Pareto-optimal SNCs catering to specific product-market profile; and  

(iii) Evaluating the SNCs generated in (ii) against a set of metrics representing the chosen SN 

performance criteria applicable to a given context.  
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Figure 3.1: Conceptual framework guiding the proposed methodological approach 
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As stated in Section 3.1, these three components represent key areas which need to be focused on to achieve the 

aim of this study while addressing the key research gaps presented in Section 2.8. Accordingly, consumer 

requirements are captured in multiple attributes by establishing a product-market profile. Then, the individual 

decisions of SN entities (accounting for their adaptive behaviour) are evaluated at the SN-level by generating 

alternative Pareto-optimal SNCs for a given product-market profile. Finally, out of these alternative optimal 

SNCs, one SNC is selected based on other evaluation criteria as per the preference of the decision-maker. Each 

of these key components of the conceptual framework is explained in detail in the following subsections. 

 Establishing the product-market profiles 

The product-market profile of a consumer region captures consumer requirements, with reference to a given 

product, using multiple dimensions, which are taken as the input to the MAOM. Within the context of the above 

framework, the product-market profile of a given consumer region l represents the estimated consumer 

requirements, with respect to the three key attributes, aggregate demand (𝑉𝑙), expected lead-time (𝐿𝑇𝑙) and WTP 

price (𝑃𝑙). Capturing the product-market profile this way serves two key purposes: primarily, it provides a 

complete representation of consumer requirements; secondly, these product-market profile attributes provide 

guidance for making SNC decisions so as to meet desired SN-level performance targets. It is common practice to 

derive the values of such attributes using demographic and historical data. However, given that such historical 

data is not readily available to be used in this study, a set of alternative methods has been used to estimate the 

required values, as outlined below. 

The base parameters used to derive the attributes of the product-market profile are per capita income 

(www.imf.org), price level index, which is the ratio of purchasing power parity to market exchange rate 

(www.ec.europa.eu), energy consumption (data.worldbank.org) and population density 

(www.worldometers.info). Attribute 𝑃𝑙  for the target consumer region is taken as proportionate to the price level 

index of that region. Attribute 𝐿𝑇𝑙  is estimated considering per capita income, assuming that populations with high 

income (i.e., affluent consumers) expect a shorter delivery lead-time. Analytical Hierarchy Process (AHP) is 

employed to estimate the aggregate demand (volume attribute) of the product-market profile, using several base 

parameters, as further detailed below.  

AHP is a widely used multi-criteria problem-solving technique, originally proposed by Thomas L. Saaty (Saaty 
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1986). The use of AHP for estimating 𝑉𝑙 allows accounting for multiple base parameters representative of a 

market-segment and the differences between consumer regions to arrive at a more robust estimate of the aggregate 

demand, compared to assuming that the demand is proportional to the population density of the target consumer 

region alone. AHP has been used in a number of applications such as selecting the best alternative, allocating 

resources and forecasting sales (Zhang et al. 2017; Podvezko 2009). Especially, AHP is designed to model a 

problem, which has criteria, sub-criteria and alternatives, in a hierarchical manner following a series of steps.  

Such criteria and sub-criteria could be quantitative or qualitative, where quantitative (e.g., cost, speed) factors are 

derived using statistical data and qualitative factors (e.g., comfortability, appearance) are assessed based on expert 

opinions. 

The fundamental mathematical theory of AHP is to use consistent matrices and Eigenvectors to generate a weight 

for each alternative with respect to the given criteria. The primary mechanism of constructing a matrix in AHP is 

by deriving a ratio-scale weight between a pair of alternatives for each given criterion. The principle Eigenvector 

of such a matrix gives the ratio (i.e., weight) across all alternatives. Weights derived from multiple Eigenvectors 

give the linear additive weight of an alternative with respect to all criteria. In certain applications, this resultant 

additive weight of each alternative is used to rank the alternatives in a way that allows the decision-maker to make 

a choice. In this study, the proportional difference between these additive weights is used to allocate demand 

among each consumer regions. A detailed account of the process followed in applying the AHP process, including 

relevant calculations, is provided in Appendix 1.   

 Generating alternative Pareto-optimal SNCs catering to product-market profiles  

Generating alternative Pareto-optimal SNCs for a given product-market profile means identifying the best set of 

SN entities to meet the expected SN-level performance levels while meeting the product-market profile attributes. 

To accomplish this requirement, modelling the adaptive behaviour of SN entities in the face of changing SN 

conditions was identified as an important requirement. As discussed in Section 1.4, a SN can be considered as a 

socio-technical system consisting of a number of autonomous or semi-autonomous business organizations (i.e., 

SN entities) with distinct characteristics, such as capabilities, resources and processes, which functions based on 

a set of competitive priorities. Typically, these SN entities independently make decisions while interacting with 

other SN entities and take necessary actions, e.g., adopting new technologies, expanding the capacity of facilities 
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and updating business models, to cope with the challenges such as market forces or competitor manoeuvres 

(Swaminathan, Smith & Sadeh 1998). Such distinct and dynamic behaviour of individual SN entities can create 

complex aggregate behaviour at the SN level. It is the cumulative effect of these collective decisions and actions 

that manifest in the form of SNs that are competing against each other in terms of satisfying a given product-

market profile.  As such, to arrive at an optimal solution for a given SNC problem, both the SN-entity (local) 

decision-making and SN-level (global) performance need to be aligned. The challenging nature of such problems, 

such as e.g., distributed decision-making in a global context, demands solution approaches that extend beyond the 

realm of mathematical programming (Barbati, Bruno & Genovese 2012). However, integration of these 

perspectives cannot be achieved by using either meta-heuristics, MASs, or any other similar technique, alone, 

hence the need for a combined approach. 

This study adopts MAS in combination with intelligent auctioning and bidding strategies and evolutionary 

algorithms to determine the optimal SNCs catering to specific product-market profiles while accounting for the 

diverse goals and autonomous decision-making behaviour of individual SN entities of a given SN. SN entities are 

modelled using MASs, representing the SN entities as computational agents and these agents are considered to be 

discrete entities having distinct characteristics and behaviours that learn and adapt to survive under changing SN 

conditions (Sheremetov & Rocha-Mier 2008). As such, MAS can overcome the limitations in other modelling 

techniques due to its capacity to accommodate such computational agents, complex SN structures and changing 

SN conditions. While adopting such a distributed decision-making approach in modelling SN entity-level 

decisions, a centralised decision-making approach is adopted to make SN-level decisions, which is to generate 

alternative Pareto-optimal SNCs. Therefore, MAOM is developed in this study to generate alternative Pareto-

optimal SNCs for given product-market profile, integrating both MAS and optimisation approaches to model SN 

entity-level decisions and evaluate these decisions at the SN-level.  

MAS has been implemented in MAOM by employing Q-learning algorithms and rule-based reasoning to model 

SN entity behaviour in presenting bids; the reverse-auctioning process is used for two purposes in relation to 

identifying a set of SN entities: one is to determine reserve values for each node in the bidding process with the 

aim of optimising SN-level performance with minimum information available; and the other is to ensure that a 

competitive bidding process takes place. Optimisation based solution approach has been used in selecting 

competitive bids at the SN-level while achieving expected SN-level performance metrics.  
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Accordingly, the SN-level optimisation is in the form of a binary programming model, which belong to the 

combinatorial optimisation type problem cluster. Therefore, applying exact algorithms such as branch-and-cut 

and branch-and-bound is practically infeasible due to exhaustive search which is not tractable as the computational 

time could increase exponentially with the problem size (El Motaki et al. 2019). Additionally, for the purpose of 

dealing with two objectives, the applicability of evolutionary multi-objective optimisation techniques have been 

identified as appropriate over the exact algorithms such as goal programming. Moreover, dealing with multiple 

fronts of SN-level performance requires dealing with trade-off solutions. In mathematical terms, such solutions 

are called Pareto-optimal solutions or non-dominated solutions which are widely dealt with using evolutionary 

multi-objective optimisation techniques (Niyomubyeyi et al. 2020). In this study,  a widely used evolutionary 

multi-objective optimisation algorithm, NSGA-II has been used to generate alternative Pareto-optimal SNCs to 

achieve the expected SN-level performance. 

 Scenario-based optimisation  

The changing SN conditions, the uncertainties in operational parameters, disruptions, structural changes of SN, 

and inter-dependencies between various entities within the context of SNC make SN design decisions such as 

supplier selection, facility location and order allocation particularly challenging. Among the mix of modelling 

approaches and solution methodologies proposed in the literature to deal with SN uncertainties and dynamics, as 

discussed in Section 2.4, evaluating “what-if” situations supported by scenario-based approaches is considered to 

be appropriate for solving SNC problems under changing SN conditions (Gabrel, Murat & Thiele 2014). The 

proposed MAOM approach first determines alternative optimal SNCs considering a selected set of SN-level 

performance metrics for a given product-market profile; these SNCs are then subject to further evaluation based 

on other criteria considered important for the type of industry concerned, e.g., energy consumption or carbon 

footprint, as needed.  

Speed, efficiency and responsiveness are the SN-level performance dimensions that are widely used in the 

literature (Avelar-Sosa, García-Alcaraz & Maldonado-Macías 2019; Tseng et al. 2019).  The two objectives used 

in the proposed MAOM, total SN cost (TSNC) and lead time (LT), represent the efficiency and speed dimensions 

of the SN-level performance, respectively. These metrics have been chosen to demonstrate the efficacy of the 

proposed MAOM, in line with the product-market profile concerned.  However, depending on the type of product 
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portfolio, industry or the SN strategy pursued pertaining to a given situation, a different set of objectives could be 

selected to represent the relevant SN-level performance dimensions. 

 The proposed approach vs existing approaches 

The merits of the proposed approach were compared against those of the approaches used in the existing SNC 

models. The characteristics of existing approaches were identified through the review of SNC literature and 

referring to the study by Hang and Qu (2008). Accordingly, the significance of the proposed approach is 

benchmarked on multiple criteria (based on the classification used in Chapter 2) as listed below: 

(i) SN characteristics: considers structural, spatial and temporal characteristics;  

(ii) decision-making autonomy of SN entities: indicates the level of detail of the individual decisions 

incorporated into modelling;  

(iii) SN-level decision-making autonomy: informs the approach adopted in SN-level optimisation;  

(iv) adopted modelling approaches and solution methodologies: consider the methods/ techniques 

used to model both SN entity-level decisions and SN-level decisions;  

(v) SNC objectives: represent the SN-level performance measures;  

(vi) product-market profile: indicates the aggregate consumer requirements in multiple attributes.  

Figure 3.2 compares the proposed approach with existing approaches with respect to the above criteria. Based on 

these criteria, the existing approaches can be clustered into two approaches where the most common one is 

adopting a centralised decision-making approach to SN-level optimisation assuming static and deterministic SN 

context while giving no attention to the autonomous behaviour of SN entities. The next common approach is 

adopting de-centralised decision-making to SN-level optimisation assuming static and deterministic SN context 

while giving no attention to the autonomous behaviour SN entities. As the research problem highlighted in Section 

1.2, the need for modelling SN entity-level decisions and evaluating them at SN-level to generate alternative 

optimal SNCs in the face of changing SN conditions has been addressed in the proposed approach. Additionally, 

to this primary contribution, the majority of the existing literature has considered only one attribute (i.e., aggregate 
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 Existing approach (1) Existing approach (2) Proposed approach (MAOM) 

Notations   Decision-making autonomy/ the scope of decision; 
S

 Supplier; 
P

Manufacturing plant; 
C

Consumer region 

SN characteristics 

(structural, spatial, 

temporal) 

multi-stage, multi-echelon SN (both 

upstream and downstream); no spatial 

attribute; static and deterministic SN 

context 

multi-stage, multi-echelon SN (only upstream); 

no spatial attribute static and deterministic SN 

context 

multi-stage, multi-echelon SN (both upstream and 

downstream); geographically dispersed; dynamic 

and stochastic SN context 

SN entity level decision-

making autonomy  
not modelled not modelled modelled (adaptive behaviour) 

SN-level decision-

making autonomy 
modelled (centralised) modelled (de-centralised) modelled (centralised) 

Modelling approaches 

and solution 

methodologies 

deterministic-analytical (e.g., dynamic 

programming) and combinatorial 

optimisation (e.g., GA, ACO) 

deterministic-analytical (e.g., ATC) and MAS 

(e.g., negotiation protocols) 

MAS (Q-learning, rule-based reasoning, intelligent 

auctioning and bidding) and combinatorial 

optimisation (GA, NSGA-II) 

SNC objectives single and multiple objectives single objective multiple objectives 

Product-market profile single attributed single attributed multi-attributed 

Figure 3.2: Comparison between existing approaches and the proposed approach 
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demand) to represent the product-market profile, this study considered a multi-attribute product-market profile 

representing volume, lead-time and WTP price. Accordingly, in comparison, the proposed approach is expected 

to make distinct contributions to the SNC literature through its comprehensive approach.   

 Chapter summary 

This chapter presented the conceptual framework proposed in this study as a holistic approach to achieving its 

aims. The proposed conceptual framework consists of three steps namely, establishing the product-market profiles 

for different consumer regions, generating alternative Pareto-optimal SNCs for each product-market profile, 

evaluating the SNCs generated against a set of performance metrics applicable to a given context. Out of the three 

steps presented in the conceptual framework in Figure 3.1, the primary focus of this study is to generate alternative 

SNCs catering to specific product-market profiles, which are achieved in this study with the proposed MAOM. 

Two common modelling approaches have been found in the extant SNC literature as presented in Figure 3.2 and 

these approaches are compared and contrasted with the proposed approach against six criteria namely: SN 

characteristics, SN entity-level decision-making autonomy, SN-level decision-making autonomy, adopted 

modelling and solution methodologies, SNC objectives, and product-market profiles. In response to a number of 

limitations in the existing SNC models, the proposed approach stands out on a number of accounts. Primarily, 

MAOM is significant in terms of generating alternative optimal SNCs accounting for the autonomous decisions 

of SN entities sharing minimum information with other SN entities, while incorporating the changing SN 

conditions. This was achieved by adopting a distributed decision-making approach to model SN entity-level 

decisions and a centralised decision-making approach to model SN-level optimisation. To serve these purposes, 

MAS and combinatorial optimisation modelling approaches were used with solution methodologies including Q-

learning, rule-based reasoning, reverse-auctioning and bidding and evolutionary algorithms.  
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 METHODOLOGY 

 Introduction 

This chapter presents the methodology adopted to achieve the aim of this study, which is to develop a 

comprehensive approach to the generation of alternative SNCs for varied product-market profiles optimised under 

a given set of organisational and environmental conditions. The overall approach to achieve the aim of this study 

has already been discussed in some detail in Chapter 3 in terms of the proposed conceptual framework.  

This chapter is arranged as follows. In Section 4.2, the rationale for the selected methodology is presented. The 

modelling framework developed to implement MAOM is presented in Section 4.3. This is followed by presenting 

the four steps of the modelling framework: conceptualisation in Section 4.3.1, mathematical representation in 

Section 4.3.2, computer-based implementation in Section 4.3.3, and model verification and analysis of other 

experimental results in Section 4.3.4. Finally, the sub-sections (4.4.1, 4.4.2, 4.4.3) in Section 4.4 briefly present 

the sources of data used to test MAOM, the types of experiments and analysis performed and brief accounts of 

the presentation of the results and discussion. Section 4.5 summarises the chapter highlighting the key areas of 

the methodology.  

 Rationale for the chosen methodology  

In general, the methodology of a research study is decided based on a number of factors such as the nature of the 

research problem (i.e., exploratory and explanatory), the aim of the study, the type of research question(s), and 

the state-of-the-art literature. There are other factors such as time frame of the project, technical facilities (e.g., 

software) and the availability/accessibility of data which also make an impact on the selection of the methodology.  

The research problem stated in Section 1.2 indicates the need for modelling SN entity-level decisions and 

evaluating them at SN-level to generate alternative Pareto-optimal SNCs in the face of changing SN conditions. 

The review of SNC literature presented in Chapter 2 highlighted a number of limitations in the existing 

approaches. Among them, certain research gaps were identified to address in this study considering their 

importance to the current body of knowledge and practice while being feasible to address within the time frame 

of the project. Accordingly, this study identified three challenges discussed in the literature (as listed below) as 
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significant in generating alternative SNCs.  

I. The first and the most significant research need addressed in this study was enhancing SN-level 

performance in a geographically dispersed, multi-echelon distributed decision-making SN 

environment, where individual SN entities aim to satisfy their own organisational goals.  

II. The second research need was achieving the above goals in a way that required minimal information 

sharing between SN entities, which reflects the real-world situation of organisations’ reluctance to 

disclose commercially sensitive information.  

III. The third research need was to provide analytical insights for SN decision-makers (e.g., SN entities, 

SN analysts, consultants) in regards to sustaining SN-level competitiveness in the face of changing SN 

conditions (e.g., uncertainties and dynamics). 

The above-mentioned challenges have been addressed using appropriate modelling approaches and solution 

methodologies. Strengths and limitations of the available modelling approaches and solution methodologies in the 

SN literature were discussed in Section 2.4. Additionally, section 2.6.4 and 2.6.4.1 paid particular attention to the 

modelling approaches and solution methodologies used in SNC models and discussed their strengths and 

limitations in addressing the real SN requirements. In summary, both analytical models (e.g., Graves & Willems 

2005) and numerical models (e.g., Moncayo–Martínez and Mastrocinque 2016) fall short of addressing changing 

SN conditions, distributed decision-making requirements and desired computational efficiencies, together. This 

prevailing situation has indicated that the capacity of such models alone to address the SNC problem is quite 

limited and not practically appropriate.  Therefore, to address the above research needs, this study has selected the 

MAS-based optimisation modelling approach with the integration of intelligent auctioning and bidding strategies. 

Accordingly, MAOM has been developed in this study, which is further elaborated in the forthcoming sections. 

 MAOM modelling framework  

The proposed MAOM modelling framework is shown in Figure 4.1. This framework was developed following 

the approaches used in comparable studies. For example, Persson and Olhager (2002) developed a simulation 

model which evaluates alternative supply chain designs with respect to different performance measures following 

the steps of: (i) project planning (i.e., deciding a set of tasks to develop the simulation model and relevant 
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completion times); (ii) conceptual modelling (i.e., describing the problem context using flowcharts or text 

documents); (iii) conceptual model validation (i.e., assessing and correcting the conceptual model); (iv) computer-

based model development; (v) verification (i.e., testing the computer-based model to confirm the accurate 

implementation of the conceptual model); (vi) model validation (i.e., testing the computer-based model with the 

real system); (vii) sensitivity analysis (i.e., examining the changes of input to the output); (viii) experimentation 

and analysing the output data (i.e., analysing the output data and re-run the experiments if necessary); (ix) 

implementation (i.e., making recommendations or implementations based on the analysed results).   

Having considered the above approach and its applicability to implement MAOM to address the SNC problem, 

four major steps were followed in this study. These steps are conceptualisation; mathematical formulation; 

computer-based implementation; and verification of the proposed MAOM and the analysis of experimental 

results. The literature has reported successful implementations of MAS modelling approaches in a number of 

applications in different disciplines (Barbbati, Bruno & Genovese 2012; Lee & Kim 2008). Accordingly, the 

salient features of the modelling approaches used in these applications can be differentiated in terms of the agent 

environment, agent attributes, agent characteristics, and agent architecture. A similar approach has been adopted 

in developing the proposed MAOM in this study. The implementation of each step falls into five phases: agent 

and agent environment; agent characteristics; agent types, attributes and architectures; agent communication; and 

agent model execution.  

 Step 1 – Conceptualisation 

Conceptualisation is a communication method which enables the researcher to convey the intended meaning of 

concepts or terms used in the research (Sequeira 2014; Onen 2016).  Onen (2016) holds a broader view on 

conceptualisation, which is “starting with the process of forming concepts that describe the identified research 

problem and proceeding to the derivation of agreed-on meanings of concepts, as well as the operationalisation of 

study variables, in order to avoid ambiguity and misinterpretation in a researcher’s work” (Onen 2016, p.28). In 

recognition of the importance of conceptualisation, the initial step of this study was to conceptualise the SNC 

problem in relation to concepts and terminologies used in the development of the MAOM.  

Accordingly, in the first step, the SNC problem is conceptualised across the five phases identified above. Phase 1 

considers the agent and the agent environment, which is the structural and spatial characteristics of the SN. 
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Figure 4.1: The proposed framework for the implementation of MAOM  
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Phase 2 presents agent characteristics.   Phase 3 introduces agent types, which are specific to this SNC problem 

context their attributes and architectures. Phase 4 presents communication between SNC agents identified in Phase 

1 through the interaction protocols (i.e., CNP). Phase 5 informs the execution of the MAOM to generate alternative 

SNCs for varied product-market profiles. 

 Phase 1 – Agent and Agent environment  

Two major views on ‘what an agent is’ can be gleaned from the extant literature: one is focusing on the attributes 

and behaviours of agents and the other focusing on their applications; i.e., how agents are used in solving problems 

within a particular domain (Marks et al. 2018; Mostafa et al. 2017; Russell & Norvig 2016). Based on the review 

of the definitions currently available in the literature, agents are considered to be entities representing human 

representatives or tasks (mutually exclusive) with certain inherent characteristics, which are typically executed 

using software applications. An agent environment is defined in the literature as the modelling context that falls 

outside the control of agents (Macal & North 2010; Van Otterlo 2009; Sutton 1998). In relation to the SN context, 

individual SN entities are considered as agents and the SN environment as the agent environment. The SN 

environment is illustrated in Figure 4.2, which is explained in terms of structural and spatial characteristics. The 

structural dimension of the environment reflects the composition of the SN, which includes: the number of stages 

and echelons in the SN; the number of SN entities and their relationships; and multiple product platforms and 

product variants involved (Serdarasan 2013). A typical SN has multiple stages which could be responsible for: 

supplying raw materials; producing parts, components or sub-assemblies; assembling final products; or delivering 

finished goods through various intermediate points to the final consumer. Depending on the product architecture 

or BOM of a product, there could be multiple raw material, component or sub-assembly types which are 

sourced/manufactured in respective stages. Each of these raw material, component and sub-assembly types is 

represented as a node. Accordingly, there could be multiple nodes at any stage, and at a given node, there are a 

number of competing SN entities, who perform similar functions, termed as entity options. These entity options 

are dispersed in different geographical locations (representing the spatial characteristics of the SN) and capable 

of performing the required value-adding functions at the respective node. Depending on factors such as the 

location of facilities, capacity of their plants, and the processes or technologies utilised, these entities can compete 

with each other on the basis of cost, lead-time or quality parameters. For example, a local supplier may be able to 

supply a component at a higher price with a shorter lead-time, whereas an overseas supplier may be able to supply 
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it at a much lower price but with a considerably longer lead-time. Consumers are spread across the world, and as 

such, in this study, consumer demand is considered as the aggregate regional demand.  

 Phase 2 – Agent characteristics  

In line with the way agents are defined, a range of agent characteristics are presented in the literature. This study 

adopted the suite of characteristics proposed by Wooldridge and Jennings (1994) and interprets each of them here 

with respect to the SN context introduced above.  

 Autonomous: SN entities independently make their own decisions considering their competitive 

priorities, organisational strategies and available resources.  

 Adaptive: SN entities change their behaviour/decisions in light of external factors such as business 

trends, regulatory frameworks and economic conditions. 

 

Figure 4.2: Conceptual representation of a SN 
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 Reactive: SN entities make a timely and appropriate response to external influences such as plant 

breakdowns, loss of suppliers and transport delays.  

 Pro-active: SN entities review their operations from time to time and implement new initiatives (e.g., 

capacity additions) to cope up with future changes.  

 Social: SN entities interact with each other for fulfilling customer requirements, for example, in relation 

to placing orders for raw materials and/or parts. 

 Phase 3 - Agent types, attributes and architectures 

In the literature, agent classifications are proposed based on the role of the agent within the system concerned 

(Caridi & Calieri 2004). From the purpose of modelling, Swaminathan, Smith and Sadeh (1998) classified SNs in 

terms of structural (e.g., retailer, distributor) and control (e.g., inventory control) elements. Madejski (2007) 

proposed a classification in terms of physical (e.g., distributors, manufacturers) and functional (e.g., order 

acquisition, production scheduling) agents. In this study, two types of agents are introduced, namely, physical and 

auxiliary. SN entities (e.g., suppliers, manufactures) performing typical SN operations and physically located in 

different geographical regions are considered as physical agents, and those who support SNC decision-making in 

satisfying different product-market profiles are considered as auxiliary agents.  

The attributes of an agent establish the identity of the agent, which allows it to be distinguished from and 

recognised by other agents (Macal & North 2010).  The proposed agents in this study have distinct attributes 

which will be explained later in this section. Agent architecture is another important aspect of the modelling 

approaches used, which reflects how an agent is constructed thus giving rise to certain properties, Additionally, 

the behavioural or functional attributes (Chin et al. 2014; Wooldridge & Jennings 1994; Maes 1991). Maes (1991) 

proposed a succinct definition of agent architecture, which was adopted in this study: a collection of modules with 

a mechanism to interact with each other to perform a particular function. The architecture of the proposed agents 

in this study consist of multiple modules, namely, DM, LM and CM, which are explained along with each agent 

type.    

Physical agents: In relation to the SNC problem studied, a set of three physical agents are introduced, namely, 

supplier (SA) agent, manufacturer (MA) agent and distributor (DA) agent to represent suppliers, manufacturers 
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and distributors of the SN respectively. These physical agents are located in different geographical regions. The 

primary function of these agents is to perform the core value-adding operations in relation to satisfying a given 

product-market profile. As such, SA agents are arranged into a number of tiers according to the BOM of the 

product involved. For example, if there are multiple tiers in the supply stage; first-tier suppliers supply sub-

assemblies; second-tier suppliers supply the required parts and/or components and third-tier suppliers supply raw 

materials. Similarly, MA agents produce final products, and DA agents are responsible for storing finished 

products ready to be dispatched to relevant consumer regions. These physical agents have distinct capacity levels 

applicable to their value-adding operations (e.g., processing, assembly, storage and handling) depending on the 

node they belong to. Additionally, certain physical agents periodically upgrade their capacity through the purchase 

of new machinery, adopting new technology and expanding facilities etc. Given these capacity levels, each agent 

will then have a distinct unit operations cost and operations time related to processing, assembly, storage and 

handling. In this study, operations cost and operations time of the SN entities have been treated as order winning 

attributes, considering their relevance to the particular product-market profile, with respect to achieving the 

individual SN entity-level goals. Accordingly, other product attributes such as quality, delivery, flexibility and 

service are treated as order qualifiers, which are assumed to meet the threshold (satisfactory) levels of 

performance. Additionally, these physical agents take part in the reverse-auctioning process to explore business 

opportunities. The functionality of physical agents in the context of reverse-auctioning is executed with the help 

of the three modules in the agent architecture shown in Figure 4.3.  

DM, LM and CM of physical agents: DM supports an agent to bid for orders pertaining to the given product-

market profiles using the knowledge-base of that agent. It makes the bidding decisions take the form of sequential 

decision-making within the dynamic SN context, and the decision-making of an agent is modelled using Markov 

decision process (MDP) (Puterman 2014). 

(Routing msgs)

(Rule-based approach)

DM

CMI/P

 connected agent(s)

O/P 

connected agent(s)

(Q-learning)
LM

 

Figure 4.3: The architecture of the physical agents 
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MDP is considered to be a mathematical framework (as indicated in Figure 4.4) for stochastic dynamic programs, 

which models dynamic systems using a sequential decision-making approach (Puterman 2014). MDP consists of 

a set of states (Xm), a set of actions (An), a transition function (f (Xm, An)) and a reward (Tn) (Puterman 2014; Van 

Otterlo 2009). A given state can be considered as an observation space of the problem, which represents the 

capacity level of an SN entity of this study. There could be a number of actions to take (i.e., profit ranges in this 

study) in relation to transferring from one state to the other. The transition function indicates the transition from 

one state to the other, and it is a probability distribution across a set of action/transitions. The system will receive 

a reward (i.e., positive or negative) depending on the action taken at the given state. A policy is a function which 

maps a state to an action and solving MDP means finding the optimal policy which maximizes the expected utility 

(Puterman 2014). 

A set X of world states representing the capacity levels of an agent 

A set A of actions representing profit ranges of an agent 

A transition function - f (Xm, An) 

Xm-1× An×Xm → [0,1] such that 

∑ Pr(𝑥′| 𝑥, 𝑎) = 1  
𝑥′∈𝑋

∀𝑥 ∈ 𝑋, ∀𝑎 ∈ 𝐴 

A reward Tn 

Optimal policy Π 

Xm-1 Xm Xm+1 Xm+2

Tn-1

An-1 An An+1

Tn Tn+1

T(Xm-1, An-1, Xm)

Π(Xm-1)

  

 

Figure 4.4: Illustration of MDP with mathematical notations 
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MDPs are solved using learning algorithms which are in two forms, namely, model-based and model-free (Chin 

et al. 2014). Model-based algorithms (e.g., dynamic programming) are used when all the elements of the MDP 

discussed above are known in relation to finding an optimal policy whereas model-free algorithms (e.g., 

reinforcement learning) work in situations of incomplete information (Van Otterlo 2009). Model-free learning 

uses rewards gained through the interactions with the environment to reinforce the learning process. Considering 

the non-deterministic nature of the SNC problem and the variability associated with the behaviour of SN entities, 

in this study, a model-free algorithm is used to make the bidding process-related decisions. 

Reinforcement learning, which is adopted in this study, is widely used in model-free learning environments 

(Diallo, Sugiyama & Sugawara 2019). Reinforcement learning requires clever exploration mechanisms (e.g., 

temporal learning, monte-carlo, direct policy search) to explore the solution (state-action) space to find optimal 

policies (Puterman 2014). Among them, the temporal-difference learning is selected, which is an unsupervised 

learning technique, predicting the outcome of an action at the end of a series of states (Van Otterlo 2009). There 

are a number of different temporal difference methods available such as Q-learning (Watkins & Dayan 1992), 

SARSA (Sutton 1996) and actor-critic learning (Konda & Tsitsiklis 2003). The Q-learning algorithm has a simple 

value iteration process by updating the Q-function in the Q-table using the reward gained from the selected action 

at a given state. The Q-function helps in predicting the best action in a given state to maximize the cumulative 

reward. In this study, the Q-table (as given in Table 4.1) is defined in the form of a matrix to store state-actions. 

States of the Q-table are capacity levels, and the actions are the defined profit ranges which will be discussed 

more in detail in Section 4.3.2.2. The Q-value corresponding to each state-action is updated based on the reward 

that the agent gained through the bidding process. At the very first bidding of a physical agent for a new product-

market profile, the value of each entry (i.e., Q-value) is set to zero, and for a regular product-market profile, the 

previous knowledge is used along with the updated Q-table. After each action, the Q-table is updated with a 

positive or negative reward depending on the outcome of the bids.  

Figure 4.5 presents the bidding process of the physical agent. Upon receiving an invitation to bid, at iteration 1, 

the decision-making module of physical agents first chooses to follow either an exploration or an exploitation 

strategy, depending on whether the invitation is for a new product-market profile or not (i.e., whether they have 

bid in the past). Exploration strategy is appropriate in the case of a new product-market profile due to the absence 

of prior bidding outcomes, in situations such as the introduction of a new product, a new physical agent joining 
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Figure 4.5: Steps involved in the decision-making process (bidding process) of physical agents 
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the SN or an existing physical agent bidding for the first time on a given product. Exploitation strategy is employed 

to make use of the physical agent’s experience acquired through participation in past auctions or the earlier 

iterations of the current reverse-auction process. Under exploitation strategy, once the action is selected, unit 

bidding price and bidding time are calculated. Detailed explanations on all the relevant steps, conditions and 

constraints used in this process are mathematically presented in Section 4.3.2.2. Once the bids generated as above 

are presented to the corresponding SN entity selection (SES) agents for consideration, iteration 1 of the bidding 

process is complete. Upon evaluation of all bids received in iteration 1, the SES agent informs respective physical 

agents as to whether they are invited to bid in the next iteration of the auctioning process. Shortlisting of bids to 

proceed to the next iterations is made based on the comparison of bids received against the reservereserve values 

of price and time. Subsequent iterations of the bidding process may follow multiple paths as illustrated in Figure 

4.5, depending on the outcomes of the previous iteration. At the start of each subsequent iteration, the physical 

agents update their Q-table with a positive or negative reward depending on whether or not the bid was shortlisted 

to proceed to the next iteration. The physical agent then reads the updated Q-table to see if there is a lower profit 

range available than was used to bid in the previous iteration. If a lower profit range in the previous iteration can 

be found, then an exploration-based conditional bidding strategy is followed. Under this strategy, the physical 

agent randomly selects an action, based on a profit range which is less than that used in the previous iteration, and 

bidding values are again calculated. In case that a lower profit range cannot be found, the physical agent considers 

whether the bid in the previous iteration was shortlisted or not. If the bid was shortlisted, then the repetitive bidding 

strategy is followed. Under this strategy, the physical agent presents the same values used in the previous iteration 

of auctioning in response to the current invitation. Otherwise, the agent decides to stop further bidding for the 

given product-market profile. This brings the reverse-auctioning process to its conclusion. 

Auxiliary agents: A set of six auxiliary agents are introduced in the proposed approach namely, SES agent, order 

processing (OP) agent, auctioning (AU) agent, optimisation (OPT) agent, transportation (TA) agent and evaluation 

(EA) agent. The role of auxiliary agents is to support SNC decisions in relation to the generation, optimisation 

and evaluation of alternative SNCs for different product-market profiles. Auxiliary agent architecture consists of 

DM and CM as shown in Figure 4.6. The way in which each of these agents’ functions is elaborated in the 

following sub-sections.  
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OP agent: The architecture of the OP agent is shown in Figure 4.7. As presented in the conceptual framework in 

Chapter 3, initially, the product-market profile of each consumer region was estimated. Then, the volume attribute 

of such product-market profile is fed to the OP agent to calculate the number of units required from each SN node 

using the information in the BOM of the product. Figure 4.8 shows a sample BOM which indicates that A11 

number of units are required from node 1 to produce product A. Then the OP agent contacts both SES agents and 

the AU agent to pass the relevant information (i.e., SN node indices and the number of units required from each 

SN node) via the communication module.  

 

 

Decompose product-

market profile using 

BOM

DM

CM node indexes, units 

required from each node
product-market 

profile

SES agent  

and AU agent

 

Figure 4.7: OP agent architecture 
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Figure 4.6: The architecture of the auxiliary agents 
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AU agent: The architecture of the  AU agent is shown in Figure 4.9. The primary responsibility of the AU agent 

is to perform the reverse-auctioning. Once the AU agent receives relevant SN node indices from the OP agent, a 

set of reserve prices and reserve times are generated based on the product-market profile attributes to those SN 

nodes in order to execute the reverse-auctioning process. The proposed reverse-auctioning process serves two 

purposes: one is optimising the SN level performance sharing the minimum information; and the other is to 

motivate physical agents to bid with the best value they can offer which indirectly creates a competition between 

physical agents. The AU agent generates a set of feasible optimal reserve prices and reserve times based on the 

attributes of the product-market profile using a GA for relevant SN nodes as given in Figure 4.10. The initial 

population to execute the GA is a set of reserve prices and times (i.e., chromosomes) which are generated as given 

in Figure 4.11 and Figure 4.12, respectively. Those two reserve values are random numbers which are defined 

within the specified upper and lower threshold value. The lower threshold value is 85% of the upper threshold 

value. The upper threshold value of reserve price/ reserve processing time of each node is calculated by taking the 

willing-to-pay price/ expected lead time of the product-market profile of the respective region and the percentage 

processing cost/ percentage processing time allocated to each node, respectively. 

The process of generating a set of feasible optimal reserve prices and reserve processing times starts with 

initialising the relevant control parameters such as the size of the initial population, the number of offspring to be 

generated, the number of generations to be used (termination criterion) and the probabilities of crossover and 

mutation. Once these parameters are set, the chromosomes representing reserve prices and reserve processing 

times are generated. The feasibility of each of these chromosomes is checked by comparing their fitness value 

with the willing-to-pay price and expected lead time of the product-market profile, respectively. The fitness value 
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Figure 4.9: The architecture of AU agent 
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of each chromosome is computed taking the summation of the reserve price/ processing time at every SN node 

for a given SNC. Then the initial feasible population is subjected to the two genetic operators, mutation and 

crossover, in order to generate a predefined number of offspring. The fitness values of the offspring generated as 

above are computed, before combining them with the initial/parent population to form the new population to be 

used in the next step. Out of this population, a predetermined set of parents with the highest fitness values is 

selected to form the next generation and the two genetic operators are used again to create a new set of offspring. 

This procedure is continued until the termination criterion is met.  
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Figure 4.10: The process of generating a feasible optimal set of reserve prices and 

processing times 
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Once the AU agent has generated a set of feasible optimal reserve prices and reserve processing times, as shown 

in the in Figure 4.13, it starts the reverse-auctioning process using those values as the first set of reserve values 

which correspond to the first invitation. The invitations are sent to the physical agents through SES agents, and 

new invitations are made by lowering the initial reserve values by a certain percentage. Then the auction continues 

until the termination criteria are met (i.e., the pre- defined number of invitations) or at the time when there are no 

more eligible physical agents to bid.  

SES agents: The supplier/manufacturing facility/distribution centre selection agents are considered as SESs. The 

architecture of a SES agent is shown in Figure 4.14. The primary task of SES agents is to shortlist the physical 

agents by comparing reserve values (generated by the AU agent) with the bids presented by the physical agents. 
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Figure 4.12: The process of generating a set of reserve times 
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Figure 4.11: The process of generating a set of reserve prices 
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Each type of SES communicates with the respective physical agent type. For example, SES of suppliers 

communicates only with SAs.  
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Figure 4.14: Architecture of SES agent 
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Figure 4.13: Steps involved in the reverse-auctioning process   
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Initially, SES invites relevant physical agents to bid informing them of the number of units required. Upon 

receiving bids from those physical agents, bids are compared with reserve values and then shortlisted. That bidding 

outcome is informed to relevant physical agents and the AU agent. This process continues until the AU agent 

stops the auctioning process upon meeting the relevant termination criteria.  At the end of the auctioning process, 

respective SES agents send a set of shortlisted physical agents to the OPT agent to generate alternative SNCs for 

the given product-market profile. 

OPT agent: The architecture of the OPT agent is shown in Figure 4.15. The OPT agent is responsible for finding 

a global (i.e., SN-level) solution to the SNC problem in a way that generates optimal alternative SNCs against the 

multiple SN-level performance objectives (TSNC and LT), while meeting the product-market profile-specific 

requirements. The OPT agent receives shortlisted physical agents from the AU agent at the end of the auctioning 

process and the details (cost and time) related to the transportation function are obtained from the TA agent.   

From a mathematical point of view, the problem of finding optimal alternative SNCs belongs to the combinatorial 

optimisation type, which cannot be solved with an exhaustive search approach in polynomial time. Therefore, this 

study has employed NSGA-II (as outlined in Figure 4.16), a widely used evolutionary multi-objective optimisation 

algorithm (Deb et al. 2002), which has proven to be effective in solving combinatorial type optimisation problems 

(Niyomubyeyi et al. 2020). NSGA-II has also been used for multiple applications and found to be particularly 
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Figure 4.15: The architecture of OPT agent 
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suitable for dealing with two objectives, compared to the comparable meta-heuristics such as Strength Pareto 

Evolutionary Algorithm (SPEA) and  Pareto archived evolution strategy (PAES) (Matin, Nezafat & Golroo 2017; 

Hajipour et al. 2016; Subashini & Bhuvaneswari 2012). The three key characteristics associated with NSGA-II 

namely, elitism (i.e., fast non-dominated sorting approach), crowding distance metric (i.e., fast crowded distance 

estimation procedure) and simple crowded comparison operator, are employed to arrive at a high-quality set of 

Pareto-optimal solutions more efficiently, compared to the other evolutionary algorithms referred to above (Audet 

et al. 2018; Yusoff, Ngadiman & Zain 2011). The fast non-dominated sorting approach segregates the population 

into many non-dominated sets and then a ranking algorithm is used to select high-performing individuals from 

these sets to generate a new population using genetic operators. Crowding distance and comparison operators are 

used to measure the distance between individual solutions in the same non-dominated set and to select the 

solutions with higher crowding distance in order to maximise the diversity of the selected solutions. Apart from 

the superior functionality and solution quality achieved through the above algorithmic strategies, it is relatively 

simpler to implement NSGA-II, due to the relatively smaller number of algorithmic parameters (i.e., control 

parameters) that need to be defined by the user (Audet et al. 2018). For the same reason, the effort needed in 

calibrating the algorithm is also minimal, thereby reducing the potential biases in algorithmic performance 

(Ramesh, Kannan & Baskar 2012).  

As shown in Figure 4.16, NSGA-II starts with an initial population (i.e., parents), which is the set of SNCs having 

one physical agent (i.e., entity option) from each node. Then, fitness values (TSNC and LT) are calculated to rank 

the population using the sorting algorithm known as Pareto-fast non-dominated (PF-ND). Then, the standard 

genetic operators are applied (i.e., selection, crossover and mutation) to generate the offspring. Elitism is achieved 

by combining the chosen attributes of parents and children, that are ranked with the use of PF-ND sorting passed 

on to the subsequent generation. This process continues until the ceasing criteria are met. Finally, the solutions 

from the Pareto front are taken as the optimal SNCs for a given set of product-market profile requirements.  

TA agent: The architecture of the TA agent is shown in Figure 4.17. The TA is responsible for the overall 

transportation function across the SN. The TA agent calculates the transportation-related cost and time for a certain 

SNC on the request of OPT agent. 
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 EA agent: The architecture of the EA agent is shown in Figure 4.18. The EA agent evaluates the alternative 

Pareto-optimal SNCs generated by the OPT agent, based on additional expected SN-level performance metrics 

(in addition to cost and lead-time) and selects the best SNC that aligns with the given product-market profile. 

After a particular SNC is selected, all physical agents are informed, through relevant SES agents, to update their 

occupied production capacities and Q-table with positive rewards. 
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Figure 4.16: Overall steps in NSGA - II algorithm 
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Figure 4.17: The architecture of TA agent 
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 Phase 4 - Agent interactions  

There are a number of agent interaction protocols available in the agent-related literature such as blackboard 

systems, CNP, negotiation, multi-agent belief maintenance and market mechanisms (Weiss, 1999). These 

communication protocols are selected and applied based on the characteristics and requirements of the given 

problem and its context. Among them, CNP is widely applied in distributed systems. In general terms, CNP is a 

task sharing method, where nodes situationally become a manager or a contractor (Smith, 1980). This has been 

used in a number of studies in the SNC literature (Jiao, You & Kumar 2006; Lou, Chen & Ai 2004). When a 

composite task is received by a node, the node acts as a manager and the task is broken down into a number of 

sub-tasks to be allocated to other nodes who are considered to be contractors. Potential contractors submit their 

bids and winning contractors are awarded the tasks. Accordingly, the responsibilities of a manager are: to 

announce a task; collect and evaluate bids from potential contractors; award the bid to a suitable contractor; and 

collect and synthesize results.  The responsibilities of the contractors are to: evaluate their own capability of 

performing the task; respond to the bid (accept/reject); perform the task upon accepting the bid, and report results. 

Considering the tasks of both the manager and contractors, the steps of the CNP can be listed in the order of 

recognition, auctioning and bidding, and awarding. In the proposed MAOM, agent interactions occur following 

CNP. Figure 4.19 shows the overall communication mechanism used in the MAOM and Figure 4.20 shows agent 

connectivity. Figure 4.21 shows how information passes through relevant agents when performing the reverse-

auctioning process. Interactions are executed by the communication modules of each agent. 

Recognition: According to CNP, first, the necessity for breaking/sharing the main task into sub-tasks has to be 
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Figure 4.18: The architecture of EA agent 
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recognised. In this study, catering to a given product-market profile is the main task received by the OPT agent, 

which is then decomposed and allocated, via auxiliary agents, among supply nodes, based on the BOM.  

Reverse-auctioning and bidding: Reverse-auctioning and bidding occur between the AU agent and physical agents 

through SES agents. First, based on the BOM, the OP agent sends information regarding the supply nodes that are 

participating in the bidding process to the AU agent to generate a set of reserve values for each SN node. When 

the reverse-auctioning starts, the SES agent starts sending invitations to relevant physical agents inviting bids for 

a given product-market profile. Upon receiving invitations, each physical agent will follow their own strategies 

and procedures and prepare their bids. Then those bids are communicated to the SES agent who then assesses 

those bids against reserve values. This reverse-auctioning process continues through a series of bidding rounds 

(iterations) until the termination criteria are met. Finally, shortlisted bids are sent to the OPT agent so as to generate 

Pareto-optimal SNCs.  

Awarding: The OPT agent uses NSGA-II to find the optimal alternative SNCs considering the multiple bids 

received at each node. These SNCs are then sent to the EA agent, who determines the most suitable SNC 

considering other possible criteria such as carbon emissions and the compatibility between SN entities. Once the 

desired SNC is determined, the outcome is passed on to physical agents so as to update their occupied production 

capacities Q-table. 
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Figure 4.19: Agent connectivity in the overall system 
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 Phase 5 – Execution 

In previous sections, the functionality of each agent and their interactions were presented. This section explains 

the overall execution of the MAOM while concisely restating the agent functionality. All agents in the MAOM 

are connected, as shown in Figure 4.20. Initially, the estimated product-market profile of each consumer region is 

passed on to the OP agent for processing to determine the SN nodes to be involved and the number of units 

required from each of the relevant SN nodes. The OP agent communicates with both the AU agent and the SES 

agent. According to the BOM and attributes of the product-market profile (i.e., WTP price and lead-time), the AU 

agent is informed of the indices of the relevant SN nodes and SES agents are informed of both indices of the 

relevant SN nodes and the number of units required from each SN node. Then SES agents send invitations to all 

physical agents to bid for the given product-market profile requirements. Physical agents make their own bidding 

decisions (i.e., bidding price and time) based on their available resources and past bidding experience (supported 

by the Q-table). These decisions are then informed to relevant SES agents so that they can shortlist the physical 

agents to be invited to bid in the next round. After every iteration, all physical agents are informed of the outcome 

of their bids. This process continues until the AU agent stops generating reserve values when the terminating 

criteria are met (i.e., the pre-defined number of invitations, availability of shortlisted physical agents).  At the end 

of the auctioning process, the shortlisted physical agents are sent to the OPT agent. The OPT agent contacts the 

TA agent on needs basis to get the transportation cost and time.  Once the OPT agent generates alternative optimal 

SNCs using NSGA-II, thus optimising the SN performance in terms of TSNC and LT, the EA agent is informed 

to select the most suitable SNC based on the preference of the decision-maker. Upon selecting the best SNC based 

on an evaluation criterion, relevant physical agents are informed to update their occupied capacity and their 

knowledge base (i.e., Q-table). In any instance where the OPT agent is not able to find feasible optimal SNCs for 

a given product-market profile, then the AU agent is asked to run the auction until the termination criteria is met. 

If it is not possible to generate feasible SNCs at the end of the auctioning process, the attributes of the product-

market profile are re-evaluated, or such product-market profiles are discarded. 

 Step 2 - Mathematical formulation 

Following the conceptual definitions relevant to each phase of the framework proposed in Figure 4.1, Step 2 

presents the mathematical formulation of MAOM across the five introduced phases.  
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 Phase 1 – Agent and Agent environment 

As presented in Section 4.3.1.1, in relation to the SN context, individual SN entities are considered as agents and 

the SN environment as the agent environment. The representative SN considered in this study has 𝐼 number of 

stages (S) where  𝐒 = (𝐒1 … 𝐒𝑖 … 𝐒𝐼)  and 𝐒𝑖 is the ith stage of the supply network, which spans across the entire 

value-adding chain. Accordingly, there could be multiple nodes at any stage, and there are 𝐽 number of nodes in 

total in the SN. The nodes in the ith stage of the SN are represented by 𝐒𝑖 =  (𝐍𝑖𝑚 … 𝐍𝑖𝑗 … 𝐍𝑖𝑛). At a given node 

𝐍𝑖𝑗, there are a number of entity options (𝑅𝑖𝑗𝑘) which is denoted by  𝐍𝑖𝑗 = {𝑅𝑖𝑗1  … 𝑅𝑖𝑗𝑘 … 𝑅𝑖𝑗𝑝} where 𝑅𝑖𝑗𝑘 is the 

𝑘𝑡ℎ entity option at node 𝑗 in stage 𝑖. Here, 𝑝 is the maximum number of entity options available at 𝐍𝑖𝑗. 

Additionally, consumer regions (𝐿) are located across the world, and are presented as consumers. There are 𝐿 

number of consumer regions where 𝑳 =  {𝐿1 … 𝐿𝑙 … 𝐿𝐿}. Figure 4.22 illustrates the SN environment indicating 𝑖, 

𝑗, 𝑘, and 𝑙. 

 Phase 2 and 3 - Agent types, attributes and architectures 

Physical agents: Attributes and behaviour of physical agents (SA, MA and DA) in MAOM are mathematically 

explained in this section.  

DA agents: are located in different geographical regions designated with an identification index (ID) which is 

‘𝑖𝑗𝑘’ indicating their stage index (𝑖), node index (𝑗), and entity option index (𝑘) respectively. The main function 

of DA agents is storing the finished products to be able to dispatch to consumers. Each DA agent has distinct 

capacity levels (i.e., storage) (𝐴𝐶𝑖𝑗𝑘), operations cost (i.e., unit handling) (𝑃𝐶𝑖𝑗𝑘) and operations time (i.e., unit 

handling) (𝑃𝑇𝑖𝑗𝑘). Additionally, certain DA agents periodically expand their capacity (i.e., storage) by an 

increment expressed as a percentage of their current capacity.  

MA agents: are located in different geographical regions designated with an ID which is ‘𝑖𝑗𝑘’ indicating their 

stage index (𝑖), node index (𝑗), and entity option index (𝑘) respectively. The main function of MA agents is 

assembling the final product and dispatching it to relevant DA agents on request. Each MA agent has distinct 

capacity levels (i.e., in manufacturing) (𝐴𝐶𝑖𝑗𝑘), operations (i.e., unit assembly) cost (𝑃𝐶𝑖𝑗𝑘), and operations (i.e., 

unit assembly) time (𝑃𝑇𝑖𝑗𝑘). Additionally, certain MA agents periodically expand their capacity (i.e., assembly) 
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by an increment expressed as a percentage of their current capacity.  

SA agents: supplier agents may be organized in multiple tiers depending on the BOM of the product. For example, 

a product may need components (that is the 1𝑠𝑡 tier of the supply stage) to assemble a final product, and those 

components are made up of different parts or raw material types (that is the 2𝑛𝑑 tier of the supply stage). Those 

SA agents are located in a number of different regions depending on their distinct capabilities (e.g., availability 

of raw material, low-cost labour). For the purpose of this study, SA agents are introduced with an ID which is 

‘𝑖𝑗𝑘’indicating their stage index (𝑖), node index (𝑗), and entity option index (𝑘) respectively. Each SA agent has a 

distinct capacity level (e.g., production)  (𝐴𝐶𝑖𝑗𝑘), operations cost (e.g., unit production) (𝑃𝐶𝑖𝑗𝑘) and operations 

time (e.g., unit production) (𝑃𝑇𝑖𝑗𝑘). Additionally, certain SA agents periodically expand their (e.g., production) 

capacity by an increment expressed as a percentage of their current capacity.  

Additionally, to performing core value-adding functions, these physical agents take part in the reverse-auctioning 

process to explore business opportunities. As presented in Section 4.3.1.3, the functionality of physical agents in 
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Figure 4.22: Representation of SN environment with mathematical notations 
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the context of reverse-auctioning (as shown in Figure 4.5) is executed with the help of the three modules: DM, 

LM and CM. Upon receiving an invitation, physical agents bid in terms of unit price (𝐵𝑃𝑖𝑗𝑘) and unit time (𝐵𝑇𝑖𝑗𝑘) 

corresponding to a given product-market profile. When bidding, physical agents consider the state of their 

available capacity and past bidding outcomes.  

As indicated in Figure 4.5, upon receiving an invitation to bid, the DM of physical agents first chooses to follow 

either an exploration or an exploitation strategy, depending on whether the invitation is for a new product-market 

profile or not (i.e., whether they have bid in the past). In both cases, the physical agent generates a bid (i.e., the 

values of 𝐵𝑃𝑖𝑗𝑘  and 𝐵𝑇𝑖𝑗𝑘) for the first round of bidding, taking into account the desired profit margin, cost, time 

and the current capacity status. The current capacity status m is determined situationally following a rule-based 

reasoning approach using Eqns. (1) and (2), supported by the Q-table shown in Table 4.1. 

Equation (1) refers to the available annual capacity 𝐴𝐴𝐶𝑖𝑗𝑘 , which is the difference between planned annual 

capacity (where, 𝜆𝑖𝑗𝑘
1  is the size of capacity addition, expressed as a percentage of current annual capacity) and 

utilised capacity expressed as a percentage (𝜆𝑖𝑗𝑘
2 ) of the current annual capacity. Equation (2) refers to the 𝑅𝐶𝑖𝑗 , 

which is the number of units required from node 𝑗 (i.e., 𝛿𝑖𝑗), according to BOM and volume (𝑉𝑙) required as per 

the product-market profile. Once the relevant capacity status 𝑚 is determined, the corresponding profit range 𝑛 is 

read from the Q-table leading to the preferred action 𝐴𝑛
𝑡 , depending on the iteration 𝑡 of the reverse-auctioning 

process at which the bid is considered, and the experience of the agent reflected in the Q-table. 

𝐴𝐴𝐶𝑖𝑗𝑘 = (1 + 𝜆𝑖𝑗𝑘
1 −  𝜆𝑖𝑗𝑘

2 ) × 𝐴𝐶𝑖𝑗𝑘    (1) 

𝑅𝐶𝑖𝑗 =  𝛿𝑖𝑗 ×  𝑉𝑙  (2) 

  

Table 4.1: Illustration of the Q-table* 

                                                       Action/Profit range(n) 

Capacity Status (m) 

Low 

(5-10%) 

Medium 

(10-15%) 

High 

(15-20%) 

Under-utilized  

AACijk ≥ 0.5 × NCijk   

AACijk  ≥  RCij Q11 (5%) Q12 (10%) Q13 (15%) 

AACijk < RCij                                                                    Q21 (6%) Q22 (11%) Q23 (16%) 

Utilized 

(0.25 × NCijk)  ≤  AACijk < (0.5 × NCijk) 

AACijk  ≥  RCij Q31 (7%) Q32 (12%) Q33 (17%) 

AACijk <  RCij                                                                    Q41 (8%) Q42 (13%) Q43 (18%) 

Fully-utilized  

AACijk < (0.25 × NCijk) 

AACijk  ≥  RCij Q51 (9%) Q52 (14%) Q53 (19%) 

AACijk < RCij                                                                    Q61 (10%) Q62 (15%) Q63 (20%) 

*each cell contains a Q-value (Qmn) corresponding to capacity status m and profit range n. Percentage values    

in each cell are read as profit margins (Pmn) for capacity state m and action/profit range n. NCijk represents 

planned annual capacity 
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Initially, at iteration 1, action 𝐴𝑛
𝑡  is taken following either the exploration or exploitation strategy, as per the 

conditions shown Eqn. (3).  

Exploration strategy is more appropriate in the case of a new product market profile due to the absence of prior 

bidding outcomes, in situations such as the introduction of a new product, a new physical agent attempting to join 

the SN or an existing physical agent bidding for the first time.  

Exploitation strategy is employed to make use of the physical agent’s experience acquired through participation 

in past reverse-auctions or the earlier iterations of the current reverse-auction process. Under the exploitation 

strategy, once the action 𝐴𝑛
𝑡  is selected, unit bidding price (𝐵𝑃𝑖𝑗𝑘) and bidding time (𝐵𝑇𝑖𝑗𝑘) are calculated as per 

Eqns. (4) and (5).  𝐵𝑃𝑖𝑗𝑘  is calculated taking 𝑃𝐶𝑖𝑗𝑘  and the relevant profit percentage (𝑃𝑚𝑛) with respect to the 

capacity status (𝑚) and profit ranges (𝑛). 

𝐵𝑇𝑖𝑗𝑘  is calculated considering 𝑃𝑇𝑖𝑗𝑘  and a coefficient (𝛽𝑚). The coefficient 𝛽𝑚 is introduced to account for the 

variation in production time with respect to the capacity status. To illustrate this variation, 𝛽𝑚 values representing 

six states reflecting the three utilization levels shown in Table 4.1 are used; i.e., 𝛽𝑚;𝑚=1→6 =

 {1, 1.15, 1.3, 1.45, 1.6, 1.75}. Once the bids generated as above are presented to the corresponding SES agents for 

consideration, iteration 1 of the bidding process is completed. Upon evaluation of all bids received in iteration 1, 

the SES agent informs the respective physical agents as to whether they are invited to bid in the next iteration of 

the reverse-auctioning process. Shortlisting of bids to proceed to the next iterations is made based on the 

comparison of bids received against the reserve values of price (𝑅𝑃𝑖𝑗) and time (𝑅𝑇𝑖𝑗). Subsequent iterations of 

the bidding process may follow multiple paths as illustrated in Figure 4.5, depending on the outcomes of the 

previous iteration, as elaborated below.  

At the start of each subsequent iteration, the physical agents update their Q-table based on the outcome in the 

previous iteration, as outlined below. Depending on whether or not the bid was shortlisted to proceed to the next 

iteration, the relevant Q-value, 𝑄𝑚𝑛
𝑡 , (i.e., corresponding to relevant state 𝑚 and action 𝑛 in iteration 𝑡) of the Q- 

𝐴𝑛
𝑡 = {

𝑟𝑎𝑛𝑑𝑜𝑚(𝐴1→𝑛
𝑡 ),

max(𝑄𝑚𝑛
𝑡 ) ,

   if exploration
   if exploitation

 
(3) 

 

 

𝐵𝑃𝑖𝑗𝑘 =  𝑃𝐶𝑖𝑗𝑘  (1 +  𝑃𝑚𝑛) (4) 

            𝐵𝑇𝑖𝑗𝑘 =  𝛽𝑚  ×  𝑃𝐶𝑖𝑗𝑘 (5) 
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table is updated with a positive or negative reward as per Eqns. (6) and (7). 

 Here, 𝜇𝑖𝑗𝑘
1 is the percentage contribution of the overall profit corresponding to the previous action, 𝛾 is the discount 

factor, which is applied to future rewards (represented as max (𝑄𝑚𝑛
𝑡+1) for iteration 𝑡 + 1), where, 𝜇𝑖𝑗𝑘

2  is the 

percentage contribution of the overall loss as a reward where 𝜇𝑖𝑗𝑘
1 ≥ 𝜇𝑖𝑗𝑘

2 . 

The physical agents then read the updated Q-table to see if there is a lower profit range available than that was 

used to bid in iteration 𝑡 − 1 (i.e., 𝑛 >  1 in iteration 𝑡 − 1). If a lower profit range in iteration 𝑡 − 1 can be found 

then an exploration-based conditional bidding strategy is followed. Under this strategy, the physical agent 

randomly select an action, 𝐴𝑛
𝑡 , based on a profit range (𝐴𝑛

𝑡−1), which is less than that used in the previous iteration, 

as per Eqn. (8) and bidding values  are again calculated according to Eqns. (4) and (5). 

 In case that a lower profit range cannot be found, the physical agent considers whether the bid in the previous 

iteration was shortlisted or not. If the bid was shortlisted, then the repetitive bidding strategy is followed. Under 

this strategy, the physical agent presents the same values used in the previous iteration of bidding in response to 

the current invitation, i.e.: 

Otherwise, the agent decides to stop further bidding for the given product-market profile. This brings the reverse-

auctioning process to its conclusion.  

Auxiliary agents: As introduced in Section 4.3.1.3, the six auxiliary agents proposed in this study are SES agents, 

OP agent, AU agent, OPT agent, TA agent and EA agent. The role of those auxiliary agents is to support SNC 

decisions in relation to the generation, optimisation and evaluation of alternative SNCs for different product-

market profiles and those individual roles are presented in mathematical form in this section.  

The OP agent processes the product-market profile information to determine the number of units required at each 

supply node (i.e., 𝑅𝐶𝑖𝑗) taking into account both 𝑉𝑙  and 𝑖𝑗 as per Eqn. 2. For the first iteration, the AU agent 

𝑄𝑚𝑛
𝑡 =  𝑄𝑚𝑛

𝑡−1 + 𝜇𝑖𝑗𝑘
1  (𝛿𝑖𝑗 × 𝑉𝑙  ×  𝑃𝑚𝑛) +  𝛾 × max( 𝑄𝑚𝑛

𝑡+1) (6) 

𝑄𝑚𝑛
𝑡 =  𝑄𝑚𝑛

𝑡−1 −  𝜇𝑖𝑗𝑘
2 (𝛿𝑖𝑗  ×  𝑉𝑙  ×  𝑃𝑚𝑛) (7) 

  

𝐴𝑛
𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚 (𝐴)  | 𝐴 =  (𝐴1

𝑡−1, … 𝐴𝑛−1
𝑡−1 )          ∀ t >1 (8) 

  

𝐴𝑛
𝑡 = 𝐴𝑛

𝑡−1 | ∀ t >1 (9) 
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generates 𝑅𝑃𝑖𝑗 and 𝑅𝑇𝑖𝑗  corresponding to a given product-market profile using the GA for relevant SN nodes. The 

initial population of GA is a set of  𝑅𝑃𝑖𝑗  and 𝑅𝑇𝑖𝑗  values derived for each node as per Eqns. (10) and (11). 

The two reserve values are randomly selected from those falling within the specified upper and lower threshold 

values. The upper threshold of 𝑅𝑃𝑖𝑗  is calculated taking 𝑃𝑙  for each product from the corresponding consumer 

demand region and 𝑃𝑃𝑖𝑗  for each node. The lower threshold value is 85% of the upper threshold value. Similarly, 

𝑅𝑇𝑖𝑗  is also a random value within the upper and lower threshold values, which are calculated based on the overall 

lead-time (𝐿𝑇𝑙) as per the given product-market profile and the percentage time (𝑃𝑃𝑇𝑖𝑗) allocated for each node. 

Here, 𝐹𝑙 is the dispatching frequency of region 𝑙. The feasibility of each chromosome in the initial population is 

checked as given in Eqns. (12) and (13) by comparing the fitness value of the chromosome against the willing-to-

pay price and expected lead time of the product-market profile concerned. The fitness value of each chromosome 

in the initial population (consists of 𝑅𝑃𝑖𝑗s/ 𝑅𝑇𝑖𝑗s) is computed taking the summation of 𝑅𝑃𝑖𝑗s/ 𝑅𝑇𝑖𝑗s of all SN 

nodes. As presented in the Section 4.3.1.3, a set of feasible optimal reservereserve prices and processing times are 

generated following the steps of GA shown in Figure 4.10.  

 

Once the AU agent has generated a set of feasible optimal reserve prices and times, as shown in the in Figure 

4.13, it starts the reverse-auctioning process using those values as the first set of reserve values which correspond 

to the first invitation. The invitations are sent to physical agents through SES agents. Reserve values for 

subsequent invitations are determined by lowering the initial set of reserve values by a certain percentage, and the 

reverse-auctioning continues until the termination criteria are met (i.e., on completion of a pre-defined number of 

iterations or when there are no more physical agents to bid). The SES agent corresponding to each physical agent 

shortlists physical agents that proceed to the next iteration of bidding (i.e., 𝑅𝑖𝑗𝑘s) by comparing reserve values 

(generated by the AU agent) with the bids presented by physical agents in each iteration, as per Eqns. (14) and 

𝑅𝑃𝑖𝑗  ~ 𝑟𝑛𝑑 [𝑃𝑃𝑖𝑗  ×  𝑃𝑙  , 0.85 ×  𝑃𝑃𝑖𝑗  ×  𝑃𝑙] (10) 

𝑅𝑇𝑖𝑗  ~ 𝑟𝑛𝑑 [𝑃𝑃𝑇𝑖𝑗 ×  𝐿𝑇𝑙 × 𝐹𝑙/𝑉𝑙 , 0.85 × 𝑃𝑃𝑇𝑖𝑗 ×  𝐿𝑇𝑙 × 𝐹𝑙/𝑉𝑙] (11) 

  

∑ 𝑅𝑃𝑖𝑗 ≤ 𝑃𝑙  

 

(12) 

∑ 𝑅𝑇𝑖𝑗 ≤ 𝐿𝑇𝑙   

 

(13) 
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(15). Here, 𝑧𝑖𝑗𝑘  is a decision variable which has value 1 when the physical agent 𝑅𝑖𝑗𝑘  is shortlisted to fulfil a given 

product-market profile; otherwise, it is 0. 

At the end of the reverse-auctioning process, the OPT agent receives the final list of 𝑅𝑖𝑗𝑘s representing shortlisted 

bids from the SES agent. Given this list of 𝑅𝑖𝑗𝑘s, the cost (𝑇𝐶𝑖𝑗𝑘→𝑖’𝑗’𝑘’) and time (𝑇𝑇𝑖𝑗𝑘→𝑖’𝑗’𝑘’) representing the 

transportation function is obtained from the TA agent.   

The TA generates transportation costs and times corresponding to a given product-market profile, which are 

calculated as per Eqns. (16) and (17) for a given SNC on the request of the OPT. Transportation cost is 

proportionate to the distance between physical agents 𝑅𝑖𝑗𝑘. The distance between two selected physical agents 

(𝑅𝑖𝑗𝑘 and 𝑅𝑖’𝑗’𝑘’) at two consecutive stages 𝑖 and 𝑖′(= 𝑖 + 1) is indicated by 𝐷𝑖𝑗𝑘→𝑖’𝑗’𝑘’   and unit distance 

transportation cost is taken as ∝2  and speed is taken as 𝑉𝑠. Here, 𝑥𝑖𝑗𝑘→𝑖’𝑗’𝑘’ is the decision variable which has value 

1 when 𝑅𝑖𝑗𝑘 in stage 𝑖 and 𝑅𝑖’𝑗’𝑘’ in stage 𝑖′ are selected to fulfil a given order; otherwise, it is 0. A database is 

maintained by the TA, including a distance matrix, 𝛼2 and 𝑉𝑠. The OPT agent then generates alternative optimal 

SNCs, considering the total SN cost (TSNC) and the overall lead-time (LT) satisfying the product-market profile 

of the given region.  

The TSNC is the sum of the costs of individual operations (e.g., processing, assembly, storage and handling) at 

each 𝑅𝑖𝑗𝑘 and transportation costs between relevant SN stages.  The overall LT of the SN is the sum of the: 

operations time of the selected 𝑅𝑖𝑗𝑘in the final operational node (𝑗); transportation time between SN stages (i.e., 𝑖 

and 𝑖’); and the maximum delivery LT time of all connected nodes from the previous stage 𝑖’’ (=  𝑖 − 1). Eqns. 

(18) and (19) represent the objectives of the OPT, which are to minimize TSNC and LT. The OPT achieves the 

above SNC objectives subject to the constraint expressed in Eqn. (20), which represents the selection of only one 

physical agent at each node to generate the SNC satisfying a given product-market profile. Here, 𝑦𝑖𝑗𝑘  is a decision  

𝐵𝑃𝑖𝑗𝑘 ×  𝑧𝑖𝑗𝑘  ≤   𝑅𝑃𝑖𝑗  (14) 

𝐵𝑇𝑖𝑗𝑘 ×  𝑧𝑖𝑗𝑘  ≤   𝑅𝑇𝑖𝑗  (15) 

  

  𝑇𝐶𝑖𝑗𝑘→𝑖’𝑗’𝑘’ =  𝐷𝑖𝑗𝑘→𝑖’𝑗’𝑘’ × 𝑥𝑖𝑗𝑘→𝑖’𝑗’𝑘’ ×  𝛼2 × 𝐹𝑙 (16) 

 

𝑇𝑇𝑖𝑗𝑘→𝑖’𝑗’𝑘’ =  (𝐷𝑖𝑗𝑘→𝑖’𝑗’𝑘’ × 𝑥𝑖𝑗𝑘→𝑖’𝑗’𝑘’)/𝑉2 

 

(17) 
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variable which has value 1 when the 𝑅𝑖𝑗𝑘  is selected to fulfil a given product-market profile; otherwise, it is 0.   

In generating optimal alternative SNCs, NSGA-II starts with the initial population (i.e., parents), which is the set 

of SNCs having one entity option from each node and follows the process outlined in Figure 4.16. After a 

particular SNC is selected, all physical agents are informed through relevant SESs to update their occupied 

production capacities (as in Eqn. 21), as well as the Q-table, using Eqn. 22, where 𝜇𝑖𝑗𝑘
3 >  𝜇𝑖𝑗𝑘

1 >  𝜇𝑖𝑗𝑘
2 . 

  Step 3 - Computer based implementation 

This step presents an overview of the implementation of MAOM on the MATLAB 2016b software platform. As 

indicated in Figure 4.23, the primary input to the computer-based implementation of the model is the product-

market profile of a region, and the output is alternative Pareto-optimal SNCs which satisfy the relevant product-

market profile attributes. Alternative optimal SNCs are generated so as to optimise SN-level performance in terms 

of TSNC and LT.  

  

  Minimise TSNC  

= ∑ ∑ ∑ 𝑦𝑖𝑗𝑘 .

𝑅𝑖𝑗𝑘∈ 𝑁𝑖𝑗𝑁𝑖𝑗∈𝑆𝑖𝑆𝑖∈𝑆

𝐵𝑃𝑖𝑗𝑘 . 𝛿𝑖𝑗 . 𝑉𝑙 + 

∑ ∑ ∑ ∑ 𝐷𝑖𝑗𝑘→𝑖′𝑗′𝑘′

𝑅𝑖′𝑗′𝑘′∈𝑁𝑖′𝑗′𝑁𝑖′𝑗′∈𝑆𝑖′𝑁𝑖𝑗∈𝑆𝑖𝑆𝑖,𝑖′∈𝑆

. 𝑥𝑖𝑗𝑘→𝑖′𝑗′𝑘′ . ∝2 . 𝐹𝑙 
(18) 

  

  Minimise LT 

 

 

 

= ∑ 𝑦𝑖𝑗𝑘

𝑅𝑖𝑗𝑘∈ 𝑁𝑖𝑗

𝐵𝑇𝑖𝑗𝑘 . 𝛿𝑖𝑗 . 𝑉𝑙 𝐹𝑙⁄
       

+  ∑ 𝐷𝑖𝑗𝑘→𝑖′𝑗′𝑘′ .
𝑅𝑖𝑗𝑘∈ 𝑁𝑖𝑗 

𝑅𝑖′𝑗′𝑘′∈ 𝑁𝑖′𝑗′ 

𝑥𝑖𝑗𝑘→𝑖′𝑗′𝑘′/𝑉𝑠  

+ max
𝑁𝑖′′𝑗′′∈𝑆𝑖′′

𝐿𝑇𝑖′′  

(19) 

 

 

  Subject to: 

∑ 𝑦𝑖𝑗𝑘

𝑘∈𝐾𝑗

 = 1  

(20) 

 

𝑖𝑗𝑘 
2 =  ijk

2 + 𝑅𝐶𝑖𝑗/ (1 + ijk
1 ) 𝐴𝐶𝑖𝑗𝑘     (21) 

𝑄𝑚𝑛 =  𝑄𝑚𝑛 + 𝜇𝑖𝑗𝑘
3  (𝛿𝑖𝑗 × 𝑉𝑙 ×  𝑃𝑚𝑛 ) (22) 
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As explained in Chapter 4, the reverse-auctioning procedure was used in shortlisting the physical agents that could 

satisfy the product-market profile. Accordingly, bidding related decisions of physical agents were constrained by 

auctioning conditions and the relevant attributes of the product-market profile, apart from the attributes of physical 

agents and their past experience.  

The model is implemented using scripts (basic programming files), functions (programs that accept inputs and 

return outputs), and control flows (conditional statements, loops). Scripts are used to programme the functionality 

of the physical agents using functions and control flows following the agent architecture. Control flows are used 

to implement iterative decision-making while considering the given termination criteria. The communication 

between physical agents is implemented through functions sending communication parameters as arguments. The 

organisation of functions and control flows in the script are shown in Figure 4.24.   
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Figure 4.23: Software-based implementation framework 

 

 

 

 

 

Figure 4.1: Software-based implementation framework 
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Attributes of product-market profile

Number of simulation runs (NoSR)

Number of auction invitations (NoAI)

Input 

Main body

While NoSR <= 10

While NoAI <= 5

Order Processing agent

Auctioning agent

Tier 2 supplier selection agent

Tier 1 supplier selection agent

Manufacturer selection agent

Distributor selection agent

end

              OPT agent

end

              EA agent

function[supply node indices, number of units from each supply 

node, upper threshold price, upper threshold time] = OP_agent 

(volume, WTP price, lead time)

Input 

Bill of Material of the product

Percentage price for each node

Percentage processing time for each node

% Calculate the number of units required from each supply node

% Calculate upper threshold processing cost and processing time 

for each supply node

function[reserved values for each node] AU_agent ( supply 

node indices, upper threshold price, upper threshold time)

Input

Percentage processing cost and processing time

% Generate initial set of reserved price and time

      % Calculate the reserved price for each supply node

       % Calculate the reserved time for each supply node 

     

% Run GA to generate optimal set of reserved prices

% Run GA to generate optimal set of reserved times

function[selected supply entity 

indices, bids] = SEST2_agent 

(reserved values for tier2 nodes, 

invitation counter)

% Call Tier2 supplier (T2S) agents

% Select successful bids 

 

function[selected supply entity 

indices, bids] = SEST1_agent 

(reserved values for tier1 nodes, 

invitation counter)

% Call Tier1 supplier (T1S) agents

% Select successful bids 

function[selected supply entity 

indices, bids] = SESmfg_agent 

(reserved values for mfg nodes, 

invitation counter)

% Call manufacturer (mfg) agents

% Select successful bids 

function[bidding price and time of each supply 

node] = T2S/T1S/mfg/dis (volume, invitation 

counter)

Input

Profit percentage for each state-action

Processing time coefficient for each state 

if invitation counter = 1

   Input supply entity attributes

   Initialise Q tables

else

   Load Q tables, Updated Tier2 supplier    

   attributes 

end

for each supplier

if supplier is new & invitation counter ==1

  % calculate the bidding price and time

if  supplier is regular & invitation counter ==1

  % calculate the bidding price and time

else

if supplier won the previous bid

 Update Q-table with + rewards

if agent able to bid with a lower profit

  % calculate the bidding price and time

else

  % use same profit to bid

end

else

  Update the Q-table with -reward

if agent able to bid with a lower profit

  % calculate the bidding price and time

else

  % quit bidding

end

   

function[selected supply entity 

indices, bids] = SESdis_agent 

(reserved values for dis nodes, 

invitation counter)

% Call distributor (dis) agents

% Select successful bids 

function[optimal SNCs] = OPT_agent 

(selected supply entity indices, bids)

% Run NSGA-II to generate alternative 

optimal SNCs

function[assigned supply entity indices] = EA_agent (optimal 

SNCs)

Input

Energy consumption of each node

Energy consumption by unit distance travel 

% Calculate total energy consumption of each SNC
 

Figure 4.24:  Outline of the coding for implementing MAOM on MATLAB  
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 Step 4 – Verification and simulation experiments 

Any developed model has to be tested for accuracy and robustness to ensure its use in a given problem context. 

Widely used testing methods reported in the literature are verification, validation, scenario analysis and sensitivity 

analysis. Verification (as in Figure 4.25) is the process to confirm that the proposed conceptual model is 

implemented through a computer programme with an adequate level of accuracy (Davis, 1992) or in simple terms 

correct implementation of the model. The verification of the model is done mainly through finding and fixing 

model implementation errors through a number of ways. Some of the practices are: comparing the conceptual 

model and the simulation model, observing the model output for different input parameters or scenarios, checking 

the code in detail, and getting expert opinion/judgements (Oliveira et al. 2016; Tannock et al. 2007). In this study, 

the debug mode of the software was used to identify implementation errors, including syntax and execution errors. 

The proposed MAOM model was further verified by testing the functionality of agents with respect to the 

simulation outcome of the given agent. For example, the bidding price and time of physical agents for specific 

product-market profiles were recorded over the auctioning iterations. A number of authors (Law & Kelton 2000; 

Davis 1992) have presented definitions for validation, which is broadly defined as building the right model that 

meets the intended purpose/objective. A detailed definition given by Davis (1992) was “Validation is the process 

of determining: (a) the manner in which and the degree to which a model (and its data) is an accurate representation 

of the real world from the perspective of the intended uses of the model and order to test whether the right model 

is implemented in the software environment, Robinson (2006) presented a number of validation methods as 

indicated in Figure 4.26 namely, conceptual model validation (i.e., confirmation of the theories and assumptions 

are correct and meet the intended purpose of the model); data validation (i.e., confirmation of the suitability of 

data in terms of their reliability, sufficiency and accuracy to validate the model); white-box validation (i.e., 

confirmation of the modular part of the complete model which represents the real system in the required level of 

accuracy); black-box validation (i.e., confirmation that the complete model represents the real system with the 

required level of accuracy). Previous studies have used one or more of these validation methods depending on a 

number of factors such as the existence of the proposed model, in reality, availability of data in the required 

format, and the ability to identify the modular components. There are a few other methods such as face validity 

and sensitivity analysis, proposed in the literature, to be employed when, for whatever reasons, the other types of 

validation cannot be performed.  
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The validation of MAOM was done in the form of conceptual model validation and face validation. Other 

validation methods were not practically feasible to perform in this study due to a number of factors. Mainly, the 

proposed model does not exist in practice; hence, data are not available in the required format or not in a form 

which can be extracted. The lack of interest in disclosing the SN information, including those related to the 

supplier base, logistics network and product architecture is another factor that hinders validation. Conceptual 

model validation was done by examining the MAOM with respect to the intended purpose (i.e., scope, aim and 

objectives) of the study. This study considers a multi-stage, multi-echelon SN range spanning the full length and 

breadth of the SN with SN entities from different geographical regions. Incorporating structural, spatial and 

temporal characteristics as explained in Section 4.3.1.1, this model has face validity. Also, as presented in Figure 

3.1, the developed conceptual framework addresses the aim of this study which is to generate alternative Pareto-

optimal SNCs for different product-market profiles considering the distinct decisions of SN entities. Accordingly, 

the conceptual model is validated.   

However, apart from the verification and validation methods, scenario analysis and sensitivity analysis were 

performed to test the robustness of the MAOM and to estimate the extent to which the SN-level performance is 

vulnerable to the changes in the attributes of SN entities collectively in each stage and/or individually as entities 

of the SN. Scenario analysis and sensitivity analysis are important in this study due to the impact of uncertainties 

and disruptions on SNC decisions which, in turn, could have an adverse impact on SN performance. By definition, 
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Figure 4.2: Simulation model verification and validation in the 

modelling process (sourced from Sargent 1992) 
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scenarios are hypothetical contexts, which describe alternative future situations (Spaniol & Rowland 2018). There 

are a number of different ways to define scenarios namely, normative (i.e., prescriptive, which identifies the 

pathways to achieve a desirable or pre-specified future); exploratory (i.e., descriptive, which identifies different 

pathways to a probable future); and predictive, which identifies a more preferable future considering both present 

and past. In general, testing scenarios help decision-makers to identify long term requirements; adopt strategies 

to avoid problematic situations and disruptions and deal with uncertainties in a practical context. In this study, the 

exploratory scenario approach was adopted as the SN is continuously subject to changes due to uncertainties and 

disruptions, which are known to induce significant risks in terms of their impact on SN performance. SN 

disruptions reported in the literature include unforeseen incidents such as transportation mishaps, natural 

calamities and intentional attacks (Schmitt et al. 2017), as well as anticipated circumstances like facility 

breakdowns, failures of the supplier base, offensive actions of competitors and abrupt changes in demand 

(Rezapour, Farahani & Pourakbar 2017; Govindan & Fattahi 2017). Therefore, the robustness of the MAOM was 

tested using multiple scenarios that incorporated the consequences of one or more of the disruptions referred to 

above. 

Sensitivity analysis is performed on a model to investigate the impact of changes in parameters and assumptions 

on the output of the model (Pannell 1997). Sensitivity analysis is performed in this study to estimate the extent to 

which the SN-level performance is vulnerable to the changes in the attributes of SN entities collectively in each 

stage and/or individually as entities of the SN. Results of both scenario analysis and sensitivity analysis help in 

assessing the robustness of the optimal SNCs; and making more credible and persuasive recommendations such 

as the circumstances for changing the optimal SNCs and how it should change (plus the underlying reasons for 

such changes); the consequences of using the same derived optimal SNC ignoring the changing circumstances. If 

the results of the analysis reveal that the selected SNC is robust, that is SN performance does not change 

significantly against SN uncertainties, it provides credibility to accept/ adhere to the selected SNC. In an instance 

where the selected SNC does not display the desired level of robustness, then opportunities are available to know 

under what circumstances (e.g., attributes of SN entities) the selected optimal SNC would be effective or what 

alternative SNCs would be effective.  
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 Data collection and analysis 

 Data sources 

The proposed MAOM was tested using data published in the literature, and this will be discussed in Chapter 5 in 

a detailed manner. The primary data source used in this study pertains to a  refrigerator production network, which 

was originally used by Umeda et al. (2000) to estimate life cycle cost. The logistics network of the refrigerator 

production network was proposed by Krikke et al. (2001) and Fleischmann et al. (2001). A number of other new 

parameters were introduced to suit the SNC problem addressed in this study, which are further explained in 

Chapter 5.  

The refrigerator SN consists of five stages including two supply stages, raw material and components, the final 

assembly stage and a distribution stage before the finished products reach end-users via individual consumer 

regions (virtual retail outlets). There are 18 nodes and 120 SN entities (i.e., entity options) in this network. The 

attributes of SN entities are agent ID (i.e., ‘𝑖𝑗𝑘’), 𝑃𝐶𝑖𝑗𝑘 , 𝑃𝑇𝑖𝑗𝑘 , 𝐴𝐴𝐶𝑖𝑗𝑘 , 𝑁𝐶𝑖𝑗𝑘. As stated in Section 4.3.1.3, 

𝑃𝐶𝑖𝑗𝑘 , 𝑃𝑇𝑖𝑗𝑘 represent different types of value-adding operations depending on the SN stage. For example, 𝑃𝐶𝑖𝑗𝑘 

of manufacturer refers to manufacturing cost and 𝑃𝐶𝑖𝑗𝑘 of distributor refers to storing and handling related cost. 

Seven consumer regions in Europe are considered in this study, adapted from Krikke et al. (2001). For each 

consumer region, a product-market profile was estimated, including the attributes of volume, lead-time and WTP 

price as explained in Chapter 3.2.1.  

 Simulation experiment design 

As presented in step 4 of the conceptual framework, simulation experiments were designed primarily to: 1) verify 

the proposed MAOM and illustrate the agents’ behaviours; 2) test the baseline model under static and deterministic 

conditions; 3) test the robustness of MAOM by conducting scenario analysis; and 4) estimate the extent to which 

the SN-level performance is vulnerable to the changes in SN characteristics. Accordingly, a set of four simulation 

experiments were carried out in relation to verification, sensitivity analysis and scenario analysis.  An introduction 

to each of the above analyses was presented in Section 4.3.4.  and simulation results of each analysis are presented 

in Chapter 5. 
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The first set of experiments were conducted for the verification of the model. The model verification was done 

through debugging, detailed code checking, and testing the behavior of agents as proposed in MAOM. The second 

set of experiments was conducted considering a deterministic SN context which is considered as the baseline 

model, assuming SN entities available at the time of initial consideration and their attributes remain the same over 

time. The third set of experiments was performed to analyse multiple scenarios, which incorporate both SN 

uncertainties and disruptions. The designed scenarios were distinct, depending on the type of the SN uncertainty 

or disruptions considered and how they originate in the SN (i.e., upstream, midstream and downstream). 

Altogether, there were seven scenarios tested in this experiment. The fourth set of experiments focuses on the 

sensitivity analysis. Having performed four types of analysis, the extent to which the SN-level performance is 

vulnerable to the changes in SN characteristics were estimated.  

 Reporting results and discussion 

Multiple presentation formats are used to report the results of the experiments undertaken. Verification-related 

experimental results are presented mainly using graphs to illustrate the behaviour of the selected physical agents. 

In the base-case analysis, results are reported in tabular format with respect to: the relevant product-market 

profiles, the performance of SNCs in terms of the average and the range of SN performance, the number of optimal 

SNCs in the Pareto front, and SN entities in the most energy-efficient  SNC with the total energy consumption of 

that SNC. Results of scenario analysis are presented in tabular format for each product-market profile, accounting 

for the average of SN performance, percentage difference from the base-line model, and the number of optimal 

SNCs in the Pareto front. Results of the sensitivity analysis are presented in terms of the average SN performance 

with respect to each percentage change of SN entity attributes, and the percentage difference in SN performance. 

Accordingly, the results are analysed in the form of: identifying the impact of uncertainties and disruptions on 

SN-level performance; identifying the robustness of the MAOM in the face of SN uncertainties and disruptions; 

and identifying, to which SN characteristics, the SN-level performance is more sensitive.  

 Chapter Summary 

This chapter presented the methodology adopted to achieve the aim of this study, which is to generate alternative 

optimal SNCs for different product-market profiles in a given set of organisational and environmental conditions. 

The need for taking a distributed decision-making approach was identified as a critical aspect of modelling the 
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behaviour of the SN entities.  Accordingly, MAOM was proposed to achieve the aim of the study. A modelling 

framework was developed to implement the MAOM which consisted of four steps (i.e., conceptualisation, 

mathematical formulation, computer-based implementation and model execution), each step was executed across 

five phases (i.e., agent and agent environment; agent characteristics; agent types, attributes and architecture; agent 

communication; and execution). Two types of agent were introduced to serve the distinct purposes of the SNC 

problem context. SN entities were modelled as physical agents whereas supportive decisions for SNC were 

modelled as auxiliary agents. Both these agent types were modelled incorporating distinct agent attributes, 

characteristics and architectures. Agent communication was implemented using CNP in a way that selected agents 

through the intelligent reverse-auctioning and bidding strategies. MAOM was tested on a refrigerator production 

network. Initially, verification of the model was performed, followed by scenario analysis and sensitivity analysis.  
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 SIMULATION RESULTS 

 Introduction 

This chapter presents the case study of a refrigerator SN where the proposed MAOM has been applied, including 

the implementation details of the MAOM and the results of the simulation experiments. Simulation experiments 

were designed to 1) verify the proposed MAOM including the agents’ behaviours, 2) test the baseline model under 

static and deterministic conditions, 3) test the robustness of MAOM by conducting scenario analysis, and 4) test 

to which SN characteristics that overall SN-level performance is more sensitive. This chapter first provides 

information about the case study of the refrigerator SN in Section 5.2, followed by the simulation experiments 

and results in Section 5.3. Section 5.4 summarises and concludes this chapter. 

 Case study – refrigerator supply network 

As introduced in Section 4.4.1, this study, adapted the dataset pertaining to a refrigerator SN, which was initially 

used by Umeda et al. (2000), and later modified by Krikke et al. (2001) and Fleischmann et al. (2001). Those 

modifications include additional parameters related to logistics networks for optimizing lifecycle costs. To help 

demonstrate the efficacy of the proposed MAOM, several new parameters were introduced considering the 

specific SNC problem introduced in this study.  

There are five stages (𝐼 =  5) in the refrigerator SN: two supply stages (i.e., raw material and components), the 

final assembly stage, and a distribution stage before the finished products reach end-users via the respective 

consumer regions (virtual retail outlets). There are 18 nodes in the refrigerator SN including four raw material 

supply nodes, five-components supply nodes, one manufacturing node, one distribution node and seven retailer 

nodes. There are 25 different components manufactured at the components supply stage using four different types 

of raw material, namely, iron, plastic, aluminum and copper. In order to reduce the complexity of the SN for 

demonstration purposes, these 25 components were categorised into five groups based on the type of raw material 

used and the manufacturing process employed. The final assembled products are sent to distribution centres 

through which retailers at each consumer region receive goods. Accordingly, there are multiple nodes (𝐍𝐢𝐣) in 

each stage, and there are multiple entity options (𝑅𝑖𝑗𝑘𝑠) capable of performing the required value-adding functions 
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at each node, which are modelled as physical agents in this study. A detailed description of the nodes and entity 

options of the refrigerator SN are presented in Section 5.2.1 and Section 5.2.2, respectively. The connectivity 

between nodes is shown in Figure 5.1. Krikke et al. (2001) proposed 10 consumer regions in Europe in their study. 

Out of those 10 consumer regions, seven consumer regions (l = 1 → 7) were considered in this study (see Section 

5.2.3) considering the accessibility through land transportation. Seven consumer regions in Europe were 

considered with distinct product-market profiles attributed by 𝑉𝑙 , 𝐿𝑇𝑙  and 𝑃𝑙 , which were derived using the four 

base parameters as presented in Section 3.2.1. 

   Nodes of the refrigerator supply network 

This section presents a detailed description of the nodes of the refrigerator SN in addition to the introduction 

provided above. There are 18 nodes in this SN, and those nodes are distributed across five stages. In the 2nd tier 

supply stage, there are four supply nodes, which supply four main types of raw material, namely iron, plastic, 

aluminum and copper. These raw material types are supplied in different forms; for example, iron is sourced as a 

metal sheet and plastic in the form of powder. There are 25 different components in the 1st tier supply stage, and 

they have been assigned to five nodes, considering the similarities in the material used and the manufacturing 

processes involved. Table A2.1 lists the details of each of the 25 components with their attributes, including the 

material used, weight, price, manufacturing cost and energy consumption. Figure A2.1 presents the graphical 

representation of each of these components.  

At the final product assembly stage, all components produced by the nodes in the 1st tier supply stage are 

assembled to form the final product. Then, the finished products are sent to different retailers (in each consumer 

region) via distribution centres to satisfy consumer requirements. Table 5.1 presents details about each node 

including the item (e.g., material or components) produced, primary function involved, a description of each item, 

operations cost (𝑃𝐶𝑖𝑗) and operations time (𝑃𝑇𝑖𝑗). The given 𝑃𝐶𝑖𝑗  and 𝑃𝑇𝑖𝑗  for each node of the SN were estimated 

using the data published by Umeda et al. (2000), online sources and logical assumptions. These estimates of 𝑃𝐶𝑖𝑗  

and 𝑃𝑇𝑖𝑗  were taken as the base values in estimating operations cost (𝑃𝐶𝑖𝑗𝑘) and operations time (𝑃𝑇𝑖𝑗𝑘) of each 

entity option of the 𝐍𝐢𝐣 with certain adjustments to account for region-specific characteristics (see Section 5.2.2). 

A detailed description of the base values used (𝑃𝐶𝑖𝑗 , 𝑃𝑇𝑖𝑗 , 𝐸𝐶𝑖𝑗) is listed in Table A2.2, A2.3 and A2.4.  Illustration 

of the connectivity between nodes of the refrigerator supply network 
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 Entity options of the refrigerator supply network 

Each node of the refrigerator SN is served by more than one SN entity, termed as entity options in this study (see 

Section 4.3.1). Entity options in all nodes are commonly referred to as SN entities in this chapter, and they were 

modelled as physical agents in MAOM. Altogether, there are 120 SN entities in this refrigerator SN. The attributes 

of SN entities are ID, 𝑃𝐶𝑖𝑗𝑘, 𝑃𝑇𝑖𝑗𝑘 , 𝐴𝐶𝑖𝑗𝑘, 𝜆𝑖𝑗𝑘
1

, 𝜆𝑖𝑗𝑘
2

 and  𝐸𝐶𝑖𝑗𝑘 as listed in Table A2.5. 

The selection of the locations of SN entities in the 2nd tier supply stage (i.e., raw material supplying nodes) was 

based on the availability of raw material identified through publicly available data sources. It was found that 
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Figure 5.1: Illustration of the connectivity between nodes of the refrigerator supply network 
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aluminium producing countries are Ukraine, Spain, Romania, Italy, Greece, Germany and France (www.world-

aluminium.org). Iron producing countries are Germany, Turkey, Ukraine, Italy, France, Spain, Poland, Belgium, 

Austria (www.statista.com). Plastic raw material producing countries are Turkey, Switzerland, Spain, Poland, 

France, Italy, Germany (www.worldstopexports.com). Copper producing countries are Chile and Peru 

(investingnews.com). The locations of the 1st tier SN entities were determined considering the raw material used 

for production and supplier information available on online databases (e.g., www.directindustry.com). 

Accordingly, candidate countries are Portugal, Spain, France, Belgium, Switzerland, Italy, Germany, Netherland, 

Poland, Czechia, Slovakia, Hungary, Romania, Ukraine, Bulgaria, Greece, Lithuania, Austria, Turkey, and 

Denmark. The locations of final assembly plants were determined referring to the refrigerator supplier databases 

(e.g., www.environmental-expert.com), and distribution centres were located requiring at least one distribution 

centre in each consumer region (l). 

Table 5.1: Description of nodes of the refrigerator SN 

j Item produced 
Function 

involved 
Description on each item 

𝑷𝑪𝒊𝒋𝒌 

($) 

𝑷𝑻𝒊𝒋𝒌 

(mins) 

1 Raw material 1 Manufacturing Fe 49 30 

2 Raw material 2 Manufacturing Plastic 88 50 

3 Raw material 3 Manufacturing Cu 5 10 

4 Raw material 4 Manufacturing Al 15 20 

5 Component 1 (Fe) Manufacturing 

Door1, Door2, Door3, 

Door4, Base, Sideboard, 

Back Grill, Cabinet Frame, 

mpcb 

186 147 

6 Component 2 (Fe) Manufacturing 
Compressor, Radiator, Fan 

Motor, Accumulator 
50 135 

7 
Component 3 

(Plastic) 
Manufacturing 

Cabinet, Duct in room, 

Evaporator case, Duct, 

Gasket, Door plastic, SPCB, 

Tank 

 

413 

 

77 

8 Component 4 (Cu) Manufacturing Cabinet pipe, Dryer 10 10 

9 Component 5 (Al) Manufacturing Evaporator, Heater 28 15 

10 Final product 
Final 

assembly 
Refrigerator 10 45 

11 Final product Distribution Refrigerator 5 5 

Note: j – node index; PCij – operations cost of node j; PTij – operations time of node j; Al – Aluminium; 

Fe – Iron;  Cu – Copper  

 

Table 5.2: Attributes (with mean and standard deviation) of product-market profile of each 

consumer regionTable 5.3: Description of nodes of the refrigerator SN 

j Item produced 
Function 

involved 
Description on each item 

𝑷𝑪𝒊𝒋𝒌 

($) 

𝑷𝑻𝒊𝒋𝒌 

(mins) 

1 Raw material 1 Manufacturing Fe 49 30 

2 Raw material 2 Manufacturing Plastic 88 50 

3 Raw material 3 Manufacturing Cu 5 10 

4 Raw material 4 Manufacturing Al 15 20 

5 Component 1 (Fe) Manufacturing 

Door1, Door2, Door3, 

Door4, Base, Sideboard, 

Back Grill, Cabinet Frame, 

mpcb 

186 147 

6 Component 2 (Fe) Manufacturing 
Compressor, Radiator, Fan 

Motor, Accumulator 
50 135 

7 
Component 3 

(Plastic) 
Manufacturing 

Cabinet, Duct in room, 

Evaporator case, Duct, 

Gasket, Door plastic, SPCB, 

Tank 

 

413 

 

77 

8 Component 4 (Cu) Manufacturing Cabinet pipe, Dryer 10 10 

9 Component 5 (Al) Manufacturing Evaporator, Heater 28 15 

10 Final product 
Final 

Refrigerator 10 45 

http://www.directindustry.com/
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As mentioned in Section 5.2.1, other attributes of the entity options of a node were determined using the base 

value of each node adjusted to account for the location-specific characteristics. As listed in Table A2.6, these 

regional characteristics were represented by a number of indicators namely, the hourly labour cost in each country 

(ec.europa.eu), global manufacturing competitive index (www2.deloitte.com) and annual investment in high-tech 

manufacturing (ec.europa.eu). The labour cost of a country was used to estimate the 𝑃𝐶𝑖𝑗  and the competitive 

index and annual growth rate of high technology usage were used to estimate the 𝑃𝑇𝑖𝑗 . Considering the above 

factors, the attributes of each SN entity were estimated, and the complete list is presented in Table A2.5.  

 Product-market profile 

The product-market profile of a consumer region was defined in terms of 𝑉𝑙 , 𝐿𝑇𝑙  and 𝑃𝑙  and those product-market 

profile attributes were derived using both AHP and logical assumptions as presented in Section 3.2.1 and 

Appendix 1. The 𝑉𝑙 was derived using AHP, 𝑃𝑙  was taken as proportionate to the price level index and 𝐿𝑇𝑙  was 

estimated considering per capita income, assuming that populations with high income (i.e., affluent consumers) 

expect a shorter delivery lead-time. Apart from these three main attributes, each consumer region has a dispatching 

frequency (𝐹𝑙) which was calculated assuming a fleet of vehicles having identical vehicle capacity available to 

transport goods to all consumer regions. The estimated values for each attribute of the product-market profile in 

seven consumer regions are given in Table 5.2.  

Table 5.2: Attributes (with mean and standard deviation) of product-market profile of 

each consumer region 

l 
Consumer 

region name 

𝑽𝒍 (units)  

(mean, std) 

𝑳𝑻𝒍 (days) 

(mean, std) 

𝑷𝒍 (dollars) 

(mean, std) 

𝑭𝒍 (trips) 

(mean, std) 

1 Zaragoza (15000, 500) (80,10) (1200,75) (30,1) 

2 Milan (30000, 800) (150,15) (1300,45) (60,1) 

3 Munich (35000, 400) (120,10) (1200,50) (70,1) 

4 Hannover (12000, 200) (100,12) (1200,40) (24,1) 

5 Nuremberg (19000, 1000) (110,5) (1200,55) (38,1) 

6 Paris (57000, 600) (250,20) (1300,35) (114,1) 

7 Prague 930000, 200) (160,15) (1100,30) (60,1) 
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 Simulation experiments and results 

This section initially presents the verification of the proposed MAOM, followed by the simulation experiments 

related to the baseline model, scenario analysis and sensitivity analysis. In Section 5.3.1, the implementation of 

MAOM in the refrigerator SN context is explained. Section 5.3.2 presents the verification of the MAOM, 

including the behaviour of agents in the MAOM. Then, in Section 5.3.3, simulation experiments related to the 

baseline model are presented, followed by scenario analysis in Section 5.3.4 and sensitivity analysis in Section 

5.3.5. 

 Implementation of MAOM within the refrigerator SN context   

Section 4.3.1 conceptualised the SNC problem within the context of MAS modelling in terms of the agent 

environment, agent characteristics, agent types, agent attributes and agent architectures. As stated at the beginning 

of this chapter, the proposed MAOM was applied on a refrigerator SN where the agent environment represents 

the refrigerator SN environment, physical agents are SN entities in the refrigerator SN, and auxiliary agents are 

those supporting the decisions related to the configuration of the refrigerator SN concerned.  Following the 

description of the refrigerator SN provided in Section 5.2, Table 5.3 in this section presents a summary of all 

parameters used in modelling the SN characteristics, physical agents and auxiliary agents.   

 Verification of the proposed MAOM  

A number of verification methods have been used in the literature (as presented in Section 4.3.4) to test the efficacy 

of a proposed model. The MAOM was implemented on the MATLAB 2016b software platform, and the initial 

verification of the MAOM served the purpose of testing the accuracy of implementation of the conceptual model 

on the MATLAB 2016b. In this study, the ‘debug’ mode of the above software programme was used to identify 

implementation errors, including syntax and execution errors. The MAOM was further verified by testing the 

behaviour of agents (both physical and auxiliary agents) with respect to their intended behaviour as defined in 

Section 4.3.1.3. For illustration purposes, behaviours of the key agents, that is the physical agents, AU agent, and 

OPT agent are presented in this section. These agents’ behaviours were modelled using Q-learning algorithm and 

evolutionary algorithms (i.e., GA and NSGA-II). The value of the parameters related to these algorithms and other 

settings related to the SN environment are as provided in Table 5.3.  
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As introduced in Section 4.3.1.3, reverse-auctioning was employed to select the best bids from the competing 

physical agents to optimise SN-level performance. The initial set of reserve values (i.e., 𝑅𝑃𝑖𝑗  and 𝑅𝑇𝑖𝑗) required 

to execute the reverse-auctioning process, were generated using GA. Then the AU agent sent invitations to all 

physical agents through the respective SES agents. The reverse-auctioning process for each product-market profile 

was run for a maximum of five invitations by lowering the reserve values until the termination criteria were met. 

Then this reverse-auctioning process was repeated 100 times (i.e., iterations) with a different set of initial reserve 

values. Figure 5.2 presents the optimal reserve values (price and time) generated by the AU agent for the product-

market profiles in consumer region 1, 2 and 3. In all the above-illustrated instances, the GA process converged 

before reaching 200 algorithmic iterations.  

Table 5.3: Parameter settings in the simulation environment  

SN 

characteristics 

Implementation details of MAOM 

Key 

features 

Solution 

methodologies 
Parameter name 

Parameter 

value 

SN 

environment 

Agent 

environment 
 

I 5 

J 18 

∑ 𝑅𝑖𝑗𝑘 120 

L 7 

SN entities 
Physical 

agents 

Q-learning 

algorithm 

m 6 

n 3 

𝜇𝑖𝑗𝑘
1  100 

𝜇𝑖𝑗𝑘
2  10 

𝜇𝑖𝑗𝑘
3  1000 

γ 10 

SNC decisions 

AU agent 

Reverse 

auctioning 

No. of iterations 

(invitations) 
5 

GA  

Population size  200 

Crossover probability 0.6 

Mutation probability 0.04 

Reproduction 

probability 
0.5 

OPT agent NSGA-II  

Population size  200 

Crossover probability 0.8 

Mutation probability 0.04 

 

 

Table 5.4: Parameter settings in the simulation environment  

SN 

characteristics 

Implementation details of MAOM 

Key 

features 

Solution 

methodologies 
Parameter name 

Parameter 

value 

SN 

environment 

Agent 

environment 
 

I 5 

J 18 

∑ 𝑅𝑖𝑗𝑘 120 

L 7 

SN entities 
Physical 

agents 

Q-learning 

algorithm 

m 6 

n 3 

𝜇𝑖𝑗𝑘
1  100 

𝜇𝑖𝑗𝑘
2  10 

𝜇𝑖𝑗𝑘
3  1000 

γ 10 

Reverse 

auctioning 

No. of iterations 

(invitations) 
5 

Population size  200 

Crossover probability 0.6 
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Physical agents (as introduced in Section 4.3.1.3) were implemented with an architecture, which consists of the 

three modules, DM, LM and CM. These modules help physical agents to make competitive bids using past bidding 

experience and to communicate with relevant SES agents. Figure 5.3 shows the bidding values (which were 

determined following the steps shown in Figure 4.5) of physical agents (ID: 119 and 126) for the product-market 

profile of consumer region 1, 2, 3 and 4. Figure 5.4 and Figure 5.5 show the corresponding Q-tables of Agent ID 

119 and 126, respectively. These agents were selected for illustration purposes as they were found to be shortlisted 

candidates for many product-market profiles and also they are a good representation of the distinct behaviour of 

agents. For example, for the product-market profile of consumer region 1 and 2, agent ID 119 reduced the bidding 

price (𝐵𝑃𝑖𝑗𝑘) in response to the first two auctioning invitations and then used the same bidding price for the other 

invitations. In the case of consumer region 3, the agent used the same 𝐵𝑃𝑖𝑗𝑘  for all auctioning invitations and for 

consumer region 4, the agent used the same 𝐵𝑃𝑖𝑗𝑘  up to the third invitation and then stopped bidding for the 

product-market profile concerned.  

As explained in Section 4.3.1.3, physical agents use a Q-table (i.e., their knowledge base in the form illustrated in 

Table 4.1) to make bidding decisions when participating in the auctioning process. When referring to the Q-table, 

the physical agent initially decides the capacity level (based on Eqn. 1 and 2) and then follows either an exploration 

or exploitation strategy depending on whether the invitation is for a new product-market profile or not. For 

example, Agent ID 119  selected capacity status 2 as it’s current capacity level with respect to the demand of the 

consumer region 1. 

Then the agent selected an action (i.e., profit margin) in order to calculate the 𝐵𝑃𝑖𝑗𝑘. Since Agent ID 119 was an 

experienced agent (as per agent’s attributes given in Table A2.5) in bidding for consumer region 1 (see Figure 

5.4.), action 3 (i.e., Q31) which has Q-value of 922.2 (the highest Q-value in capacity status 2) was selected. In 

response to the second invitation, the same agent used exploration strategy and action 1 was selected (see Figure 

5.4.). Accordingly, as shown in Figure 5.3, the new 𝐵𝑃𝑖𝑗𝑘  is lower than the previous one. 

 Since the bid for the second invitation was also successful, Q-table (i.e., Q21) was updated to 842.7 with a positive 

reward (see Figure 5.4). From the second auction invitation onwards, this agent used the same action (i.e., action 

1) which means the same 𝐵𝑃𝑖𝑗𝑘  as the agent was shortlisted by the SES agent, but agent ID 119 was not able to 

lower the profit range any further. By comparison, when Agent ID 119 presented bids for the product-market 

profile of consumer region 2, capacity level 4 and action 3 were selected as per the Q-tables in Figure 5.4. Hence,  
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Consumer region 2 
 

Consumer region 3 

Figure 5.2: Optimal set of reserve values (price and time) generated by the AU agent using GA for product-market profiles in consumer region 1, 2 and 3 
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Agent ID  126 

Figure 5.3: Illustration of bidding price decision of Agent ID 111 and 126 for product-market profile of consumer region 1 and 2 
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Figure 5.4: Illustration of Q-tables of Agent ID 119 in product-market profile of consumer region 1,2,3 and 4 
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Figure 5.5: Illustration of Q-tables of Agent ID 126 in product-market profile of consumer region 1,2,3 and 4 
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the 𝐵𝑃𝑖𝑗𝑘  (i.e., $ 53.10) for the first invitation for the product-market profile in consumer region 2 is higher than 

that of the product-market profile in consumer region 1 (see Figure 5.3). In the second round of bidding, the agent 

selected action 1 following the exploration strategy. Hence, as shown in Figure 5.4, Q41 was updated to 1668, and 

the agent continued to choose the action 1 in the remaining auctioning invitations and Q41 was updated 

accordingly.  

As presented in Section 4.3.1.3, at the end of the auctioning process, the SES agent communicates the shortlisted 

physical agents to the OPT agent so as to generate Pareto-optimal SNCs. Figure 5.6 shows the Pareto-optimal 

SNCs for the product-market profile of consumer region 1,2,3 and 4. Figure 5.7 shows the Pareto-optimal SNCs 

for the product-market profile of consumer region 5, 6 and 7. It turned out that all the consumer regions have 

feasible Pareto-optimal SNCs satisfying the attributes of the product-market profile. As presented above, the 

behaviours of the AU, physical and OPT agents indicate that each agent serves the intended purpose as defined in 

Section 4.3.1.3, which also verifies the proposed MAOM in the MATLAB 2016b environment. 

 Baseline model 

This section presents the results of the baseline model which considers a static and deterministic SN context, 

assuming that the existing SN entities (i.e., physical agents in MAOM) remain functioning and no uncertainty is 

associated with their attributes (e.g., 𝑃𝐶𝑖𝑗𝑘, 𝑃𝑇𝑖𝑗𝑘 , 𝐴𝐶𝑖𝑗𝑘). These assumptions represent the situation that SNs tend 

to operate in, based on the premise that once a network is formed to suit a given product-market profile, it would 

remain the same for the foreseeable future (Braziotis et al. 2013; Huang, Zhang & Liang 2005).  

The baseline model was run in the simulation environment with the given parameter settings assumed to be 

present, and attributes of those SN entities (𝑃𝐶𝑖𝑗𝑘 , 𝑃𝑇𝑖𝑗𝑘, 𝐴𝐶𝑖𝑗𝑘) were assumed to be deterministic so that the mean 

values of the relevant parameters were used as listed in Table A2.5. Also, unique product-market profiles for 

seven consumer regions (as introduced in section 5.2.3) were considered using the mean value of each product-

market profile attribute. Table 5.3 summarises the parameters related to SN characteristics and algorithms used to 

implement the behaviours of SN entities. In the baseline model, Pareto-optimal SNCs were generated for the 

product-market profile of each consumer region by repeating the reverse-auctioning process 100 times (i.e., 

iterations).  
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Figure 5.6: Illustration of Pareto front generated by OPT agent for product-market profile in consumer region 1, 2, 3 and 4 
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Consumer region 5 Consumer region 6 

 

Consumer region 7 

Figure 5.7: Illustration of Pareto front generated by OPT agent for product-market profile in consumer region 5, 6 and 7 
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Under these conditions, the average computational time taken by a core i7-9700, 3.0 GHz computer to generate a 

set of Pareto optimal SNCs for a given product-market profile is 45 seconds. It has been reported in the literature 

that with the other SNC models using ACO, GA and dynamic programming consumed much longer time than 

that of the proposed MAOM (Moncayo-Martı´nez &  Zhang 2011; Huang et al., 2005).  For example,  Moncayo-

Martı´nez and Zhang (2011) have employed ACO to solve a SN with an estimated half of the problem size used 

in this study (i.e., 1.26 × 106 number of possible solutions) using a 2.4 GHz computer which has taken nearly 40 

seconds to solve the problem. 

Out of the SNCs generated in 100 iterations, the set of Pareto-optimal SNCs generated in the first 20 iterations for 

the product-market profile in consumer region 1 is plotted in Figure 5.8. The graph indicates that NSGA-II 

converges to a Pareto-front even though reverse-auctioning starts with a different set of reserve values. Measuring 

the quality of the Pareto-front ensures how good the generated solution is in terms of closeness to Pareto-

optimality and spread of solutions for the problem considered. In the literature, three key quality measures have 

been used, namely, convergence metric, spread metric and spacing metric (Ramesh, Kannan & Baskar 2012; 

Coello, Lamont & Van Veldhuizen 2007; Deb 2001). The convergence matric finds an average distance between 

non-dominated solutions and the actual Pareto optimal front, which is useful for evaluating the closeness to the 

true Pareto-front. Having a smaller value for this metric indicates that there is better convergence. The spread 

metric evaluates the diversity among the non-dominated solutions with respect to the objectives concerned. 

 

Figure 5.8: Pareto-optimal SNCs generated in the first 20 auctioning 

iterations for product-market profile in consumer region 1 

 

Table 5.5: Simulation results of the baseline model
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Having a smaller value for this metric indicates that there is better diversity. The spacing matric considers the 

distance between non-dominated solutions measuring the standard deviation of distances between solutions. 

Similar to the other measures, having a smaller spacing is better which indicates that the solutions are uniformly 

distributed. In this study, the aforementioned quality measures were calculated for the solutions (i.e., SNCs) 

generated by NSGA-II in the baseline model. The corresponding values for the convergence metric, spread metric 

and spacing metric are 0.21, 0.13 and 0.03. As stated in a wide range of literature (e.g., Ramesh, Kannan & Baskar 

2012; Deb 2001), having a value less than one indicates that NSGA-II generates a good set of Pareto solutions.   

Table 5.4 presents the Pareto-optimal SNCs which have the lowest average SN performance (in terms of per-unit 

TSNC and LT) obtained by repeating the reverse-auctioning for 100 iterations. The key attributes of the Pareto-

optimal SNCs of the selected Pareto front include: the average SN performance (i.e., the average of the minimum 

and maximum values of SNCs) in terms of per-unit TSNC and LT; the range of SN performance (i.e., the minimum 

and maximum values of SNCs); and the number of Pareto-optimal SNCs in the selected Pareto-front.  The results 

show that out of the product-market profiles for all consumer regions, the lowest and highest average per-unit 

TSNC (in dollars) and LT (in days) are 887 and 894, and 96 and 106 respectively. These results indicate that the 

cost of delivering a single refrigerator in many consumer regions is about the same, but the lead-times are quite 

different.  

Furthermore, the number of SNCs in a Pareto-front varies from seven (in consumer region 5) to 24 (in consumer 

region 1), which means consumer region 1 has a higher number of alternative ways to cater for the respective 

Table 5.4: Simulation results of the baseline model 

l 

Product – 

market profile 

(𝑽𝒍, 𝑳𝑻𝒍, 𝑷𝒍) 

Average Range 

No. of Pareto 

optimal SNCs TSNC 

(dollars) 

LT 

(days) 

TSNC 

[min, max] 

LT 

[min, max] 

1 (15000,80,1200) 890 99 [877, 902] [93,105] 24 

2 (30000,150,1300) 894 104 [883,904] [98,110] 19 

3 (35000,120,1200) 893 103 [883,902] [99,107] 13 

4 (12000,100,1200) 893 96 [877,908] [91,101] 14 

5 (19000,110,1200) 888 102 [879,896] [97,107] 7 

6 (57000,250,1300) 894 105 [883,905] [99,111] 18 

7 (30000,160,1100) 887 106 [883,890] [101,110] 10 

 

 

Table 5.6: Indices of SN entities in the most energy-efficient SNC for the product-

market profile of each consumer region 

Table 5.7: Simulation results of the baseline model 
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product-market profile. Out of all Pareto-optimal SNCs in the Pareto front, a SNC for a given product-market 

profile was selected based on the energy consumption for the relevant SN operations and transportation between 

SN entities. Accordingly, the IDs of SN entities in the selected Pareto-optimal SNC are listed in Table 5.5. The 

results show that there is a set of SN entities common to all product-market profiles. These SN entities are raw 

material suppliers representing node 1, 2 and 3 with ID 119, 126 and 136. Additionally, there are certain SN 

entities common to many product-market profiles representing node 4, 5, 6, 7, 9 and 10, namely ID 142, ID 255, 

ID 262, ID 277, ID 288, ID 297, ID 3106. At node 11 (i.e., distribution node), energy-efficient SN entities are 

different for each consumer region. The energy consumption of the most energy-efficient SNC varies from 190 

kJ (in consumer region 4) to 217 kJ (consumer region 7). 

 Scenario analysis 

As mentioned in Section 4.3.4, the scenario analysis aims to test the robustness of the proposed MAOM, while 

examining the impact of SN uncertainties and dynamics on SN performance. The exploratory scenario approach 

was adopted considering possible future situations where SNs are subject to change due to uncertainties and 

dynamics. Such changing SN conditions in relation to the supply, production and distribution stages, as well as 

the consumer demand (Shishebori & Babadi 2018; Salem & Haouari 2017; Dai & Li 2017; Peidro et al. 2009) 

have already been discussed in the literature review chapter of this thesis. As this study models the entire SN (i.e., 

all three stages of upstream, midstream and downstream), testing all possible scenarios with respect to the 

Table 5.5: Indices of SN entities in the most energy-efficient SNC for the product-market 

profile of each consumer region 

l 
SN nodes 

EC 

(kJ) 
N11 N12 N13 N14 N25 N26 N27 N28 N29 N3(10) N4(11) 

1 119 126 136 142 251 262 278 284 297 3106 4112 195 

2 119 126 136 146 255 262 277 288 298 3106 4126 200 

3 119 126 136 142 255 262 277 288 297 3106 4131 215 

4 119 126 136 142 252 264 278 284 297 3106 4126 190 

5 119 126 136 142 255 262 275 288 294 3105 4129 207 

6 119 126 136 142 255 262 277 288 297 3106 4126 198 

7 119 126 136 142 254 262 277 288 294 3105 4131 217 

Note: EC – energy consumption 

 

Table 5.8: Indices of SN entities in the most energy-efficient SNC for the product-market 

profile of each consumer region 

l 
SN nodes 

EC 

(kJ) 
N11 N12 N13 N14 N25 N26 N27 N28 N29 N3(10) N4(11) 

1 119 126 136 142 251 262 278 284 297 3106 4112 195 

2 119 126 136 146 255 262 277 288 298 3106 4126 200 

3 119 126 136 142 255 262 277 288 297 3106 4131 215 

4 119 126 136 142 252 264 278 284 297 3106 4126 190 

5 119 126 136 142 255 262 275 288 294 3105 4129 207 

6 119 126 136 142 255 262 277 288 297 3106 4126 198 

7 119 126 136 142 254 262 277 288 294 3105 4131 217 

Note: EC – energy consumption 
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changing attributes, behavior  and relationships of SN entities are practically impossible, particularly as the 

number of scenarios exponentially increase with the increasing number of variables involved  (Silvente, 

Papageorgiou & Dua 2019). Hence, a finite number of scenarios have been developed paying attention to the 

major issues highlighted in the SN literature and their relevance to SNC decisions, as set out in this study. 

Accordingly, this study has accounted for the effects of the geographical location of SN entities, variations in the 

capacity of SN entities (Wu, Blackhurst & Chidambaram 2006; Christopher 2002) and the impact of possible SN 

disruptions (assuming that these disruptions occur in different regions). Additionally, SN performance was tested 

against changing product-market profiles. Accordingly, seven scenarios were developed by considering, (1) 

changing operations cost (𝑃𝐶𝑖𝑗𝑘) and operations time (𝑃𝑇𝑖𝑗𝑘) of upstream SN entities; (2) changing operations 

cost (𝑃𝐶𝑖𝑗𝑘) and operations time (𝑃𝑇𝑖𝑗𝑘) of midstream SN entities; (3) changing operations cost (𝑃𝐶𝑖𝑗𝑘) and 

operations time (𝑃𝑇𝑖𝑗𝑘) of downstream SN entities; (4) disrupted upstream SN entities; (5) disrupted midstream 

SN entities; (6) disrupted downstream SN entities; and (7) changing product-market profiles.  

Simulation experiments for the scenario analysis were carried out in the simulation environment with the same 

settings as mentioned in Section 5.3.1, except for the attributes of SN entities which follow the normal distribution 

as per the given scenario. For example, in scenario 1, attributes (𝑃𝐶𝑖𝑗𝑘  and 𝑃𝑇𝑖𝑗𝑘) of upstream SN entities are 

assumed to follow the normal distribution and attributes of SN entities in other stages assumed to be deterministic. 

In the literature, log-normal and normal distribution have been used in modelling stochastic economic parameters 

(Kamath & Pakkala 2002; Johnson & Kotz 1970). In this set of scenario analyses, Pareto-optimal SNCs were 

generated for the product-market profile of each consumer region, repeating the reverse-auctioning process for 

100 iterations. The reported results of the above seven scenario analyses include the average SN performance of 

100 iterations and corresponding ranges of per-unit TSNC and LT, the percentage difference between the SN 

performance of the baseline model and the scenario analysis case performed, and the average number of Pareto-

optimal SNCs. The average per-unit TSNC of 100 iterations was calculated by first taking the average per-unit 

TSNC (i.e., the average of the maximum and minimum TSNC of the Pareto-optimal front in the given iteration) 

individually and then again taking the average of those values. This average SN performance value was calculated 

for the purpose of taking a single representative value for SN performance in the face of changing attributes of 

SN entities and to use that value for comparison with the baseline performance. The range of SN performance (for 

both per-unit TSNC and LT) was taken as the averaged maximum and minimum of 100 iterations. The percentage 

difference was calculated by subtracting the SN performance of the scenario analysis from the SN performance 



113 

 

of the baseline model. If the percentage difference is positive, values of SN performance measures are higher (i.e., 

increased per unit TSNC or LT) than the baseline model performance, a negative means values of SN performance 

measures are lower than baseline model performance. From the SN point of view, positive and negative 

differences indicate losses and savings, respectively. For example, if SN performance of the scenario analysis 

resulted in a higher per-unit TSNC that will make a loss to the entire SN and therefore, it is indicated by a negative 

sign. 

 Scenario analysis 1: changing operations time and cost of upstream SN entities 

In this scenario, the impact of uncertainties related to the attributes 𝑃𝐶𝑖𝑗𝑘  and 𝑃𝑇𝑖𝑗𝑘, of upstream SN entities (i.e., 

tier 1 and tier 2 suppliers) on SN performance was analysed. This scenario represents real-world SN conditions 

where there may be increased/decreased price of raw material or components, operational delays due to issues 

such as raw material depletion, industrial actions, and economic downturns. These uncertainties related to 

attributes of SN entities were modelled, assuming that the attributes follow the normal distribution having values 

within one standard deviation of the mean.  

The reverse-auctioning was repeated for 100 iterations and out of those 100 iterations, the set of Pareto-optimal 

SNCs generated in the first ten iterations is shown in Figure 5.9. Table 5.6 presents the results of the Pareto-

 

Figure 5.9: Pareto-optimal SNCs generated in the first ten reverse-auctioning iterations 

– senario analysis 1 
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optimal SNCs of all 100 iterations using the format of reporting results, as stated at the beginning of the Section 

5.3.4. The percentage differences of per-unit TSNC and LT of all product-market profiles indicate that per-unit 

TSNC is less than the baseline model performance; however, four of them record an increased LT. 

The percentage difference of per-unit TSNC varies from +1.1 to +2.4 and LT varies from -3.6 to +1.0. Among all 

consumer regions, consumer region 4 reported as the region with the highest reduction of per-unit TSNC and the 

region that requires the highest LT in comparison to baseline conditions. Accordingly, the above results indicate 

that the changing 𝑃𝐶𝑖𝑗𝑘  and 𝑃𝑇𝑖𝑗𝑘  have made a relatively significant impact on SN performance, compared to the 

baseline conditions. Among them, consumer region 7 is scored as the one having the lowest number of Pareto-

optimal SNCs under given SN conditions.  

 Scenario analysis 2: changing operations time and cost of midstream SN entities 

In this scenario, the impact of uncertainties related to the attributes 𝑃𝐶𝑖𝑗𝑘  and 𝑃𝑇𝑖𝑗𝑘, of midstream SN entities (i.e., 

manufacturers) on SN performance was analysed. This scenario represents SN conditions where 𝑃𝐶𝑖𝑗𝑘  and 𝑃𝑇𝑖𝑗𝑘  

of manufacturer are changed due to the introduction of new technologies, tariff reduction, workforce issues, 

machine break downs etc. These uncertainties in the attributes of SN entities were modelled, assuming that the 

Table 5.6: Simulation experiment results -  scenario analysis 1  

l 

Product – market 

profile 

(𝑽𝒍, 𝑳𝑻𝒍, 𝑷𝒍) 

Baseline model 

(average & range) 

Scenario analysis 1 

(average & range) 
% difference No. of 

Pareto-

optimal 

SNCs 
TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 (15000,80,1200) 
890 

[877,902] 

99 

[93,105] 

879 

[868,890] 

100 

[94,105] 
+1.2 -0.5 14 

2 (30000,150,1300) 
894 

[883,904] 

104 

[98,110] 

881 

[864,898] 

103 

[97,109] 
+1.4 +1.0 18 

3 (35000,120,1200) 
893 

[883,902] 

103 

[99,107] 

883 

[868,897] 

105 

[99,111] 
+1.1 -1.9 23 

4 (12000,100,1200) 
893 

[877,908] 

96 

[91,101] 

871 

[861,881] 

100 

[95,104] 
+2.4 -3.6 8 

5 (19000,110,1200) 
888 

[879,896] 

102 

[97,107] 

885 

[861,885] 

104 

[97,110] 
+1.6 -1.5 17 

6 (57000,250,1300) 
894 

[883,905] 

105 

[99,111] 

888 

[864,888] 

104 

[99,109] 
+2.0 +1.0 10 

7 (30000,160,1100) 
887 

[883,890] 

106 

[101,110] 

878 

[870,878] 

105 

[103,107] 
+1.4 +0.5 4 

 

 

Table 5.10: Simulation experiment results -  scenario analysis 1  

l 

Product – market 

profile 

(𝑽𝒍, 𝑳𝑻𝒍, 𝑷𝒍) 

Baseline model 

(average & range) 

Scenario analysis 1 

(average & range) 
% difference No. of 

Pareto-

optimal 

SNCs 
TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 (15000,80,1200) 
890 

[877,902] 

99 

[93,105] 

879 

[868,890] 

100 

[94,105] 
+1.2 -0.5 14 

2 (30000,150,1300) 
894 

[883,904] 

104 

[98,110] 

881 

[864,898] 

103 

[97,109] 
+1.4 +1.0 18 

3 (35000,120,1200) 
893 

[883,902] 

103 

[99,107] 

883 

[868,897] 

105 

[99,111] 
+1.1 -1.9 23 

4 (12000,100,1200) 
893 

[877,908] 

96 

[91,101] 

871 

[861,881] 

100 

[95,104] 
+2.4 -3.6 8 
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attributes follow the normal distribution having values within one standard deviation of the mean. Following the 

format of reporting results as stated at the beginning of the Section 5.3.4, Table 5.7 presents the results of scenario 

analysis 2.  

The percentage differences of TSNC and LT of all product-market profiles show that all product-market profiles 

had reduced TSNC except for consumer region 7. This means uncertainties of midstream SN entities have not 

made an adverse impact on SN performance compared to the uncertainties of upstream SN entities. Also, except 

for consumer regions 4 and 6, there is a reduction in LT in other consumer regions, as well. The percentage 

difference of per-unit TSNC varies from -0.2 to +1.3 and LT varies from -0.5 to +2.0. Among all consumer 

regions, region 4 (similar to scenario analysis 1) reported as the region with the highest reduction in per-unit 

TSNC and also the highest increment in LT. The highest reduction in LT is reported in consumer region 2. 

Additionally, for consumer regions 1, 2 and 3 there is a reduction in both per-unit TSNC and LT. With respect to 

the number of Pareto-optimal SNCs for each product-market profile, many consumer regions have a smaller 

number of Pareto-optimal SNCs, compared to the baseline model under given SN conditions. 

           Table 5.7: Simulation experiment results -  Scenario analysis 2  

l 

Product – 

market profile 

(𝑽𝒍, 𝑳𝑻𝒍, 𝑷𝒍) 

Baseline model 

(average & range) 

Scenario analysis 2 

(average & range) 
% difference No. of 

Pareto-

optimal 

SNCs 
TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 (15000,80,1200) 
890 

[877,902] 

99 

[93,105] 

881 

[873,888] 

99 

[94,104] 
+1.1 0 13 

2 (30000,150,1300) 
894 

[883,904] 

104 

[98,110] 

887 

[881,893] 

103 

[98,107] 
+0.8 +1.4 10 

3 (35000,120,1200) 
893 

[883,902] 

103 

[99,107] 

890 

[885,895] 

103 

[97,108] 
+0.3 +0.5 10 

4 (12000,100,1200) 
893 

[877,908] 

96 

[91,101] 

882 

[874,889] 

97 

[91,102] 
+1.3 -0.5 12 

5 (19000,110,1200) 
888 

[879,896] 

102 

[97,107] 

887 

[877,897] 

100 

[96,104] 
+0.1 +2.0 15 

6 (57000,250,1300) 
894 

[883,905] 

105 

[99,111] 

888 

[882,893] 

106 

[100,111] 
+0.7 -0.5 6 

7 (30000,160,1100) 
887 

[883,890] 

106 

[101,110] 

889 

[885,892] 

106 

[103,108] 
-0.2 +0.5 6 

 

 

Table 5.11: Simulation experiment results -  Scenario analysis 3           Table 5.12: Simulation 

experiment results -  Scenario analysis 2  

l 

Product – 

market profile 

(𝑽𝒍, 𝑳𝑻𝒍, 𝑷𝒍) 

Baseline model 

(average & range) 

Scenario analysis 2 

(average & range) 
% difference No. of 

Pareto-

optimal 

SNCs 
TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 
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 Scenario analysis 3: changing operations time and cost of downstream SN entities 

In this scenario, the impact of uncertainties related to the attributes 𝑃𝐶𝑖𝑗𝑘  and 𝑃𝑇𝑖𝑗𝑘, of downstream SN entities 

(i.e., distributors) on SN performance was analysed. This scenario represents changing SN conditions such as 

varying inventory and warehousing costs due to tariff variations, and disturbed transportation due to natural 

disasters and increased fuel costs etc.  These uncertainties related to SN entity attributes were modelled assuming 

that the attributes follow the normal distribution having values within one standard deviation of the mean. Table 

5.8 presents the results of scenario analysis 3, using the format of reporting results as stated at the beginning of 

the Section 5.3.4. 

The percentage differences of per-unit TSNC and LT of all consumer regions show that there is a reduction in 

terms of per-unit TSNC except for consumer region 5. However, except consumer region 1, 2 and 6, all other 

consumer regions require higher LTs.  The percentage difference of per-unit TSNC varies from -0.1 to +1.1, and 

LT varies from -4.7 to +1.4. Among all consumer regions, the highest saving of per-unit TSNC is reported from 

consumer region 4 (similar to scenario analyses 1 and 2), which is also the region which needs the highest extra 

LT. There is a saving in both per-unit TSNC and LT in consumer region 1 and 2. With respect to the number of 

Pareto-optimal SNCs for each product-market profile, many consumer regions have a lesser number of Pareto-

optimal SNCs, compared to the baseline model. 

Table 5.8: Simulation experiment results -  Scenario analysis 3  

l 

Product – 

market profile 

(𝑽𝒍, 𝑳𝑻𝒍, 𝑷𝒍) 

Baseline model 

(average & range) 

Scenario analysis 3 

(average & range) 
% difference No. of 

Pareto-

optimal 

SNCs 
TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 (15000,80,1200) 
890 

[877,902] 

99 

[93,105] 

888 

[875,901] 

99 

[92,105] 
+0.2 +0.5 19 

2 (30000,150,1300) 
894 

[883,904] 

104 

[98,110] 

891 

[881,901] 

104 

[98,110] 
+0.3 0 13 

3 (35000,120,1200) 
893 

[883,902] 

103 

[99,107] 

891 

[881,901] 

104 

[99,109] 
+0.2 -1.0 18 

4 (12000,100,1200) 
893 

[877,908] 

96 

[91,101] 

883 

[876,890] 

101 

[95,106] 
+1.1 -4.7 11 

5 (19000,110,1200) 
888 

[879,896] 

102 

[97,107] 

889 

[879,898] 

104 

[97,111] 
-0.1 -2.0 9 

6 (57000,250,1300) 
894 

[883,905] 

105 

[99,111] 

893 

[883,902] 

104 

[96,111] 
+0.2 +1.4 18 

7 (30000,160,1100) 
887 

[883,890] 

106 

[101,110] 

884 

[882,885] 

107 

[103,111] 
+0.4 -0.9 6 

 

 

 

Table 5.13: Simulation experiment results -  Scenario analysis 4Table 5.14: Simulation 
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 Scenario analysis 4: disrupted upstream SN entities 

SNs are subject to a number of structural changes due to existing entities leaving the network and new entities 

joining the network, or the merging and acquisitions of SN entities etc. Scenario analysis 4 considers such 

changing SN conditions where upstream SN entities are disrupted due to natural calamities and financial 

downturns etc.  These disruptions could occur to an SN entity at any time holding up their operations temporally 

or permanently, which in turn, could possibly make an impact on SN performance. The disrupted SN entities 

subjected to this analysis were selected considering their contribution to overall SN performance, referring to the 

baseline model results. For demonstration purposes, the results of the scenario analysis related to the product-

market profile of consumer region 1 are presented in Table 5.9. Six disrupted instances were analysed assuming 

those selected SN entities were not available for the continued functioning of the SN. Results presented in Table 

5.9 includes the average SN performance and corresponding ranges of per-unit TSNC and LT, the percentage 

difference between the SN performance of scenario analysis 4 and the baseline model, and the number of SNCs 

in the optimal Pareto front. 

The presented results indicate that all the given disrupted instances incur an increased per-unit TSNC and LT over 

the baseline model conditions. However, LT is similar to the baseline model in a few instances. The increment of 

Table 5.9: Simulation experiment results -  Scenario analysis 4  

Instance 

Disrupted 

SN 

entities 

Baseline model 

(average & range) 

Scenario analysis 4 

(average & range) 
% difference No. of 

Pareto-

optimal 

SNCs 
TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 119 

 

890 

[877,902] 

 

99 

[93,105] 

893 

[880,905] 

99 

[93,105] 
-0.3 0 20 

2 126 
891 

[879,902] 

101 

[93,109] 
-0.1 -2.0 18 

3 253 
890 

[877,902] 

99 

[93,105] 
0 0 22 

4 262 
892 

[881,902] 

100 

[93,106] 
-0.2 -0.5 18 

5 119, 126 
894 

[882,905] 

101 

[93,109] 
-0.4 -2.0 15 

6 255, 262 
892 

[881,902] 

100 

[93,106] 
-0.2 -0.5 18 

 

 

Table 5.15: Indices of SN entities in the most energy-efficient SNC for the product-market 

profile of each consumer region (scenario analysis 4)Table 5.16: Simulation experiment results -  

Scenario analysis 4  

Disrupted 
Baseline model 

(average & range) 

Scenario analysis 4 

(average & range) 
% difference No. of 

Pareto-
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per-unit TSNC varies from -0.1 to -0.4 and LT varies from -0.5 to -2.0. Results of Table 5.9 further indicate that 

there is no impact on SN performance with the absence of SN entity ID 253. However, other disrupted SN entities 

make an impact on SN performance. Among them, the absence of SN entity ID 126 makes the highest impact, 

followed by SN entity ID 262 and 191.  The average number of Pareto-optimal SNCs are also lower than in the 

baseline model. 

Table 5.10 lists the most energy-efficient SNC in these disruptive SN contexts for the product-market profile of 

consumer region 1. In the baseline model, the total energy consumption of the most energy-efficient SNC for the 

product-market profile in consumer region 1 is 195 kJ. However, the energy consumption of the new energy-

efficient SNC s in disrupted instances are higher than for the baseline model in all instances.  

 Scenario analysis 5: disrupted midstream SN entities 

In this scenario analysis, simulation experiments were run to analyse the SN performance in the presence of 

disrupted midstream SN entities (i.e., manufacturers). Two disrupted instances were considered as given in Table 

5.11 assuming that Agent ID 3105 and 3106 cease their production in the current planning period. As per the 

results reported in Table 5.11, average per-unit TSNC and LT of the given scenarios are similar or higher than 

that of the baseline model. 

Table 5.10: Indices of SN entities in the most energy-efficient SNC for the product-

market profile of each consumer region (scenario analysis 4) 

Instance 
SN node EC 

(kJ) N11 N12 N13 N14 N25 N26 N27 N28 N29 N3(10) N4(11) 

Baseline model 119 126 136 142 251 262 278 284 297 3106 4112 195 

1 1110 126 136 142 251 262 278 288 294 3105 4112 200 

2 119 128 136 142 252 267 278 288 297 3102 4112 206 

3 119 128 136 142 252 267 278 284 297 3102 4112 198 

4 119 126 135 142 252 267 278 288 294 3104 4112 202 

5 1110 128 136 142 252 267 278 288 297 3102 4112 202 

6 1110 126 136 146 252 267 278 288 297 3106 4112 200 

Note: EC – total energy consumption 
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According to the results of the baseline model, Agent ID 3106 is the one that satisfies all SN performance criteria; 

hence, the absence of SN entity ID 3106 made an adverse impact on SN performance. Nevertheless, the absence 

of ID 3105 has not made any difference to SN performance which indicates that it is not such a critical SN entity. 

Additionally, the average number of Pareto-optimal SNCs in consumer region 1 is less than that of the baseline 

model. As reported in Table 5.12, the energy consumption of the new SNCs is higher than for the baseline model.  

 Scenario analysis 6: disrupted downstream SN entities 

In this scenario analysis, SN performance was examined for the product-market profile in consumer region 1 in 

the presence of disrupted downstream SN entities. Two disruptive instances were tested as given in Table 5.13, 

assuming agent ID 4112 and 4126 cease their operations during the current planning period. As the results reported 

in Table 5.13, losing ID 4112 resulted in a reduced per-unit TSNC, however, needed extra LT. Conversely, losing 

ID 4126 made no difference to SN performance, and gives the same results as the baseline model. SN entities in 

the most energy-efficient SNC in this scenario are presented in Table 5.14. It shows that the energy consumption 

of the new energy-efficient SNC in disrupted instance 1 is higher than that of the baseline model 

Table 5.12: Indices of SN entities in the most energy-efficient SNC for the product-

market profile of each consumer region (scenario analysis 5) 

Instance 
SN nodes EC 

(kJ) N11 N12 N13 N14 N25 N26 N27 N28 N29 N3(10) N4(11) 

Baseline model 119 126 136 142 251 262 278 284 297 3106 4112 195 

1 119 128 136 146 252 267 278 284 297 3102 4112 199 

2 119 126 136 146 251 267 278 288 294 3102 4112 203 

     Note: EC – energy consumption 

 

Table 5.17: Simulation experiment results -  Scenario analysis 5Table 5.18: Indices of SN 

entities in the most energy-efficient SNC for the product-market profile of each 

consumer region (scenario analysis 5) 

Instance 
SN nodes EC 

(kJ) N11 N12 N13 N14 N25 N26 N27 N28 N29 N3(10) N4(11) 

Baseline model 119 126 136 142 251 262 278 284 297 3106 4112 195 

1 119 128 136 146 252 267 278 284 297 3102 4112 199 

2 119 126 136 146 251 267 278 288 294 3102 4112 203 

     Note: EC – energy consumption 

Table 5.11: Simulation experiment results -  Scenario analysis 5  

Instance 
Disrupted 

SN entities 

Baseline model 

(average & range) 

Scenario analysis 5 

(average & range) 
% difference 

No. of Pareto-

optimal SNCs TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 3105 
890 

[877,902] 

99 

[93,105] 

890 

[877,902] 

99 

[93,105] 
0 0 18 

2 3106 
891 

[879,902] 

100 

[93,106] 
-0.1 -1.0 18 

 

 

Table 5.19: Indices of SN entities in the most energy-efficient SNC in different 

disruptive instances of downstream SC (scenario analysis 6)Table 5.20: Simulation 

experiment results -  Scenario analysis 5  

Instance 
Disrupted 

SN entities 

Baseline model 

(average & range) 

Scenario analysis 5 

(average & range) 
% difference 

No. of Pareto-

optimal SNCs TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 3105 
890 

[877,902] 

99 

[93,105] 

890 

[877,902] 

99 

[93,105] 
0 0 18 

2 3106 
891 

[879,902] 

100 

[93,106] 
-0.1 -1.0 18 
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 Scenario 7: Changing product-market profiles 

In this scenario analysis, SN performance was tested with the presence of uncertainties related to the attributes of 

the product-market profile. Changing product-market profiles were modelled, assuming each attribute of the 

product-market profile of the given consumer region follows the normal distribution with the mean and standard 

deviation as given in Table 5.2. For demonstration purposes, five different instances of product-market profile in 

consumer region 1 were tested as presented in Table 5.15. In two instances, the volume of the new product-market 

profile is higher than the volume of the product-market profile in the baseline model. In those instances, consumer 

region 1 resulted in increased per-unit TSNC and LT. In instances 3 and 4, where the product-market profiles have 

a lower number of units than the baseline model, the analysis reports either a reduced per-unit TSNC or LT.  

 Summary of the scenario analysis results 

Scenario analysis was performed to test the robustness of the proposed MAOM and examine the impact of SN 

uncertainties and SN dynamics on SN performance. Seven scenarios were considered by changing the SN 

Table 5.13: Simulation experiment results -  Scenario analysis 6  

Instance 
Disrupted 

SN entities 

Baseline model 

(average & range) 

Scenario analysis 6 

(average & range) 
% difference 

No. of 

Pareto-

optimal 

SNCs 
TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 4112 
890 

[877,902] 

99 

[93,105] 

889 

[877,900] 

100 

[94,105] 
+0.2 -0.5 15 

2 4126 
890 

[877,902] 

99 

[93,105] 
0 0 23 

 

 

Table 5.23: Simulation experiment results - Scenario analysis 7Table 5.24: Simulation 

experiment results -  Scenario analysis 6  

Instance 
Disrupted 

SN entities 

Baseline model 

(average & range) 

Scenario analysis 6 

(average & range) 
% difference 

No. of 

Pareto-

optimal 

SNCs 
TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 4112 
890 

[877,902] 

99 

[93,105] 

889 

[877,900] 

100 

[94,105] 
+0.2 -0.5 15 

2 4126 
890 

[877,902] 

99 

[93,105] 
0 0 23 

 

Table 5.14: Indices of SN entities in the most energy-efficient SNC in different 

disruptive instances of downstream SC (scenario analysis 6) 

Instance 
SN nodes 

EC 

(kJ) N11 N12 N13 N14 N25 N26 N27 N28 N29 N3(10) N4(11) 

Baseline model 119 126 136 142 251 262 278 284 297 3106 4112 195 

1 119 126 136 142 252 267 278 284 297 3102 4131 212 

2 119 128 136 142 252 267 278 284 297 3106 4112 195 

   Note: EC – energy consumption 

 

 

Table 5.21: Simulation experiment results -  Scenario analysis 6Table 5.22: Indices of 

SN entities in the most energy-efficient SNC in different disruptive instances of 

downstream SC (scenario analysis 6) 

Instance 
SN nodes 

EC 

(kJ) N11 N12 N13 N14 N25 N26 N27 N28 N29 N3(10) N4(11) 

Baseline model 119 126 136 142 251 262 278 284 297 3106 4112 195 

1 119 126 136 142 252 267 278 284 297 3102 4131 212 

2 119 128 136 142 252 267 278 284 297 3106 4112 195 

   Note: EC – energy consumption 
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 conditions, including both SN uncertainties and SN dynamics. The first three analyses were performed by 

changing the operations cost and operations time of SN entities in each SN stage, i.e., the upstream, midstream or 

downstream stages. The results of these analyses indicate that depending on the increased/decreased operations 

cost and operations time of SN entities, the resultant SN performance score has decreased in per-unit TSNC/LT 

or increased per-unit TSNC/LT. Nevertheless, the variations in SN performance in uncertain SN contexts (for the 

first three scenarios) do not exceed 5% compared to the baseline model results, which means the proposed MAOM 

remains robust against changing SN conditions. When these three scenarios were individually analysed, the results 

indicate that compared to baseline SN performance, an upstream SN stage has a higher impact on SN performance 

than the downstream or midstream SN stages. Among all consumer regions, region 2 and 4 indicate a similar trend 

in their performance in all three scenarios. Consumer region 2 reports a reduced per-unit TSNC and LT, whereas 

consumer region 4 reports reduced per-unit TSNC and increased LT. 

The next three experiments focused on SN dynamics considering disrupted SN entities in three SN stages. These 

analyses were performed only for the product-market profile of consumer region 1. Results of those analyses 

indicate that when the disrupted SN entity(ies) are among the most prominent/popular SN entities (i.e. the SN 

entities that are common across multiple SNCs in the network) as per the baseline results, the new SN performance 

shows an increased per-unit TSNC and LT, while also having a higher total energy consumption than for the 

baseline model. However, the change in SN performance is less than 2% in all the disrupted instances which 

Table 5.15: Simulation experiment results - Scenario analysis 7 

Instance 
Product-market 

profile 

Scenario analysis 7 

(average & range) 
% difference 

No. of 

Pareto-

optimal 

SNCs 
TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

Baseline (15000,80,1200) 
890 

[877,902] 

99 

[93,105] 
- - 24 

1 (15111,81,1249) 
894 

[883,904] 

104 

[98,110] 
-0.4 -5.1 20 

2 (15136,82,1230) 
893 

[883,902] 

103 

[99,107] 
-0.3 -4.0 18 

3 (14820,84,1176) 
893 

[877,908] 

96 

[91,101] 
-0.3 +3.0 18 

4 (14510,86,1187) 
888 

[879,896] 

102 

[97,107] 
+0.3 -3.0 19 

5 (15337,74,1174) 
894 

[883,905] 

105 

[99,111] 
-0.4 -6.1 16 

 

 

Table 5.25: Simulation experiment results -  sensitivity analysis 1Table 5.26: 

Simulation experiment results - Scenario analysis 7 

Instance 
Product-market 

profile 

Scenario analysis 7 

(average & range) 
% difference 

No. of 

Pareto-

optimal 

SNCs 
TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

Baseline (15000,80,1200) 
890 

[877,902] 

99 

[93,105] 
- - 24 

1 (15111,81,1249) 
894 

[883,904] 

104 

[98,110] 
-0.4 -5.1 20 

2 (15136,82,1230) 
893 

[883,902] 

103 

[99,107] 
-0.3 -4.0 18 

3 (14820,84,1176) 
893 

[877,908] 

96 

[91,101] 
-0.3 +3.0 18 

4 (14510,86,1187) 
888 

[879,896] 

102 

[97,107] 
+0.3 -3.0 19 

5 (15337,74,1174) 
894 

[883,905] 

105 

[99,111] 
-0.4 -6.1 16 
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means the MAOM also remains robust in these disrupted instances.  

In the last scenario, the product-market profile of consumer region 1 was analysed subject to changing product-

market profile attributes. In instances where the volume attribute of the new product-market profile is higher than 

that of the baseline model, it results in increased per-unit TSNC and LT. In all seven scenarios, the number of 

Pareto-optimal SNCs are less than that of the baseline model and also the total energy consumption is higher than 

that of the baseline model. However, variations in SN performance did not exceed 5% compared to the baseline 

SN performance. These results indicate the robustness of the proposed MAOM in the face of  SN uncertainties 

and SN dynamics.  

 Sensitivity analysis 

Sensitivity analysis was performed in this study to estimate the extent to which the SN-level performance is 

vulnerable to the changes in SN characteristics. The first three sensitivity analyses listed below were performed 

to estimate the extent to which the SN-level performance is vulnerable to the changes in the attributes of SN 

entities collectively in each stage. Accordingly, experiments were conducted by changing both the operations cost 

(𝑃𝐶𝑖𝑗𝑘) and operations time (𝑃𝑇𝑖𝑗𝑘) of all SN entities by 10% in the upstream, midstream and downstream, 

respectively. The last experiment was performed to estimate the extent to which the SN-level performance is 

vulnerable to the changes in the attributes of SN entities individually. Accordingly, the experiment was conducted 

by changing both operations cost (𝑃𝐶𝑖𝑗𝑘) and operations time (𝑃𝑇𝑖𝑗𝑘) of selected SN entities by 10%. The selected 

SN entities for the sensitivity analysis are from all three stages (i.e., upstream, midstream and downstream).   

(1) Increasing the operations cost and time of all upstream SN entities by +10%  

(2) Increasing the operations cost and time of all midstream SN entities by +10%   

(3) Increasing the operations cost and time of all downstream SN entities by +10%   

(4) Increasing the operations cost and time of selected SN entities by + 10%   

The reported results of the sensitivity analysis include: for the selected Pareto-optimal SNCs, the average SN 

performance (i.e., the average of minimum and maximum values of per-unit TSNC and LT), and the range of SN 

performance (i.e., the minimum and maximum values of SN performance); and the number of Pareto-optimal 
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SNCs in the selected front. The percentage difference is calculated by subtracting the SN performance of the 

sensitivity analysis experiment from that of the baseline model. For example, if the difference in per-unit TSNC 

is positive, then there is a saving/reduction in per-unit TSNC, otherwise, the new SNC requires extra/ increased 

per-unit TSNC. 

 Sensitivity analysis 1: increasing the operations cost and operations time of all 

upstream SN entities by 10% 

In this experiment, a sensitivity analysis was performed by increasing both the 𝑃𝐶𝑖𝑗𝑘  and 𝑃𝑇𝑖𝑗𝑘  of all upstream 

SN entities by 10%. The purpose of this sensitivity analysis is to find the impact of changing attributes of upstream 

SN entities on the overall SN performance. Pareto-optimal SNCs were generated for the product-market profile 

of each consumer region, repeating the reverse-auctioning process 100 times (i.e., iterations). Out of these 100 

iterations, the set of Pareto-optimal SNCs generated in the first ten iterations is shown in Figure 5.10. Table 5.16 

presents the results of the Pareto-optimal SNCs, which have the lowest average SN performance (in terms of per-

unit TSNC and LT) found when repeating the reverse-auctioning for 100 iterations. The results of the baseline 

model are also listed for the purpose of comparison.  

The reported results indicate that increased operations costs and operations time of upstream SN entities gave 

higher per-unit TSNC and LT in all consumer regions compared to the baseline model conditions. Across, all 

 

Figure 5.10: Pareto-optimal SNCs generated in the first ten reverse-auctioning 

iterations – sensitivity analysis 1 

 

 

Table 5.27: Simulation experiment results -  Sensitivity analysis 2
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consumer regions, the 10% increment of operations cost and time of SN entities resulted in increased per-unit 

TSNC in the range of 9.2% to 11.1% and increased LT in the range of 2.9% to 7.8%. This further indicates that 

increasing the operations costs of SN entities has nearly the same level of impact on all consumer regions; 

however, increasing the operations time of SN entities resulted in varying levels of impact on consumer regions. 

Among all the consumer regions, region 5 reports the highest increment in per-unit TSNC and region 3 reports 

the highest increment in LT. Additionally, both per-unit TSNC and LT have considerably increased in consumer 

regions 1 to 4, whereas other regions only resulted in increased per-unit TSNC. Accordingly, these results indicate 

that a 10% increment of operations cost and time of SN entities on average resulted in 10.17% increment of  per-

unit TSNC and 5.7% increment of LT.  

 

 

 

 

Table 5.16: Simulation experiment results -  sensitivity analysis 1 

l 

Product – market 

profile 

(𝑽𝒍, 𝑳𝑻𝒍, 𝑷𝒍) 

Baseline model 

(average & range) 
 

Sensitivity analysis 1 

(average & range) 
% difference 

TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 (15000,80,1200) 
890 

[877,902] 

99 

[93,105] 

972 

[964,982] 

106 

[101,111] 
-9.2 -7.1 

2 (30000,150,1300) 
894 

[883,904] 

104 

[98,110] 

989 

[970,1007] 

111 

[104,118] 
-10.6 -6.7 

3 (35000,120,1200) 
893 

[883,902] 

103 

[99,107] 

990 

[969,1012] 

111 

[104,117] 
-10.9 -7.8 

4 (12000,100,1200) 
893 

[877,908] 

96 

[91,101] 

977 

[962,992] 

103 

[95,111] 
-9.4 -7.3 

5 (19000,110,1200) 
888 

[879,896] 

102 

[97,107] 

987 

[966,1009] 

107 

[102,112] 
-11.1 -4.9 

6 (57000,250,1300) 
894 

[883,905] 

105 

[99,111] 

982 

[970,994] 

108 

[104, 117] 
-9.8 -2.9 

7 (30000,160,1100) 
887 

[883,890] 

106 

[101,110] 

978 

[970,986] 

110 

[104,115] 
-10.2 -3.8 

 

 

Table 5.28: Simulation experiment results -  sensitivity analysis 1 

l 

Product – market 

profile 

(𝑽𝒍, 𝑳𝑻𝒍, 𝑷𝒍) 

Baseline model 

(average & range) 
 

Sensitivity analysis 1 

(average & range) 
% difference 

TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 (15000,80,1200) 
890 

[877,902] 

99 

[93,105] 

972 

[964,982] 

106 

[101,111] 
-9.2 -7.1 

2 (30000,150,1300) 
894 

[883,904] 

104 

[98,110] 

989 

[970,1007] 

111 

[104,118] 
-10.6 -6.7 

3 (35000,120,1200) 
893 

[883,902] 

103 

[99,107] 

990 

[969,1012] 

111 

[104,117] 
-10.9 -7.8 

4 (12000,100,1200) 
893 

[877,908] 

96 

[91,101] 

977 

[962,992] 

103 

[95,111] 
-9.4 -7.3 
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 Sensitivity analysis 2: increasing operations cost and operations time of all midstream 

SN entities by 10% 

In this experiment, a sensitivity analysis was performed by increasing both 𝑃𝐶𝑖𝑗𝑘 and 𝑃𝑇𝑖𝑗𝑘  of midstream SN 

entities by 10%. The purpose of this experiment was to find the impact to the overall SN performance of changing 

attributes of the midstream SN entities. Table 5.17 presents the results of the Pareto-optimal SNCs with the 

average SN performance repeating the auctioning for 100 iterations. The results of the baseline model are also 

listed for the purpose of comparison. These results indicate that increased operations cost and operations time of 

midstream SN entities reported mixed (both increases and decreases compared to the baseline model conditions) 

changes of per-unit TSNC across different consumer regions. In contrast, LT is increased in all consumer regions. 

Across, all consumer regions, the 10% increase in operations cost and operations time of SN entities resulted in 

changes to TSNC in the range of -0.2% to +0.4% and increased LT in the range of +1.5% to +2.9%. 

This further indicates that the 10% increment of operations cost of SN entities makes less than 0.4 % impact on 

the SN performance, and a 10% increment of operations time of SN entities makes less than 3% impact on the SN 

performance. Among all the consumer regions, region 3 reports the highest differences in per-unit TSNC and LT. 

Additionally, compared to sensitivity analysis 1, the 10% increment of operations cost and time of SN entities 

Table 5.17: Simulation experiment results -  Sensitivity analysis 2 

l 

Product – market 

profile 

(𝑽𝒍, 𝑳𝑻𝒍, 𝑷𝒍) 

Baseline model 

(average & range) 

Sensitivity analysis 2 

(average & range) 
% difference 

TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 (15000,80,1200) 
890 

[877,902] 

99 

[93,105] 

891 

[878,903] 

101 

[94,107] 
-0.1 -1.5 

2 (30000,150,1300) 
894 

[883,904] 

104 

[98,110] 

894 

[884,904] 

107 

[101,112] 
-0.1 -2.4 

3 (35000,120,1200) 
893 

[883,902] 

103 

[99,107] 

894 

[884,904] 

106 

[101,111] 
-0.2 -2.9 

4 (12000,100,1200) 
893 

[877,908] 

96 

[91,101] 

889 

[877,901] 

99 

[92,105] 
+0.4 -2.6 

5 (19000,110,1200) 
888 

[879,896] 

102 

[97,107] 

889 

[880,897] 

104 

[98,109] 
-0.1 -1.5 

6 (57000,250,1300) 
894 

[883,905] 

105 

[99,111] 

894 

[884,904] 

108 

[102,113] 
0 -2.4 

7 (30000,160,1100) 
887 

[883,890] 

106 

[101,110] 

886 

[884,888] 

109 

[106,111] 
+0.1 -2.8 

 

 

Table 5.29: Simulation experiment results -  sensitivity analysis 3Table 5.30: 

Simulation experiment results -  Sensitivity analysis 2 

l 

Product – market 

profile 

Baseline model 

(average & range) 

Sensitivity analysis 2 

(average & range) 
% difference 
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make a higher impact on LT than on the per-unit TSNC. Accordingly, these results indicate that 10% increment 

of operations cost and time of SN entities resulted on average, in a 0.13% increment of per-unit TSNC and a 2.3% 

increment of LT. 

 Sensitivity analysis 3: increasing operations cost and operations time of all 

downstream SN entities by 10% 

In this experiment, sensitivity analysis is performed by changing both 𝑃𝐶𝑖𝑗𝑘 and 𝑃𝑇𝑖𝑗𝑘  of downstream SN entities 

by 10%. The purpose of this experiment is to find the impact of downstream SN entities to the overall SN 

performance. Table 5.18 presents the results of the Pareto-optimal SNCs with the average SN performance 

repeating the auctioning for 100 iterations. The results of the baseline model are also listed for the purpose of 

comparison.  

These results indicate that increased operations cost and operations time of downstream SN entities gave increased 

per-unit TSNC and LT in all consumer regions compared to the baseline model conditions. Across all consumer 

regions, the 10% increment of operations cost and operations time of SN entities resulted in increased TSNC in 

the range of 0.1% to 0.3% and increased LT in the range of 1.0% to 3.1%. This indicates that with reference to 

Table 5.18: Simulation experiment results -  sensitivity analysis 3 

l 

Product – market 

profile 

(𝑽𝒍, 𝑳𝑻𝒍, 𝑷𝒍) 

Baseline model 

(average & range) 

Sensitivity analysis 3 

(average & range) 
% difference 

TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 (15000,80,1200) 
890 

[877,902] 

99 

[93,105] 

891 

[878,903] 

100 

[94,105] 
-0.1 -1.0 

2 (30000,150,1300) 
894 

[883,904] 

104 

[98,110] 

896 

[884,907] 

105 

[100,110] 
-0.2 -1.0 

3 (35000,120,1200) 
893 

[883,902] 

103 

[99,107] 

894 

[884,903] 

103 

[99,107] 
-0.1 0 

4 (12000,100,1200) 
893 

[877,908] 

96 

[91,101] 

894 

[878,909] 

99 

[93,104] 
-0.1 -3.1 

5 (19000,110,1200) 
888 

[879,896] 

102 

[97,107] 

889 

[880,897] 

103 

[98,107] 
-0.1 -1.0 

6 (57000,250,1300) 
894 

[883,905] 

105 

[99,111] 

896 

[884,907] 

107 

[101,112] 
-0.2 -2.0 

7 (30000,160,1100) 
887 

[883,890] 

106 

[101,110] 

890 

[883,897] 

106 

[102,110] 
-0.3 0 

 

 

Table 5.31: Simulation experiment results -  Sensitivity analysis 4Table 5.32: 

Simulation experiment results -  sensitivity analysis 3 

l 

Product – market 

profile 

(𝑽𝒍, 𝑳𝑻𝒍, 𝑷𝒍) 

Baseline model 

(average & range) 

Sensitivity analysis 3 

(average & range) 
% difference 

TSNC LT TSNC LT 
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the baseline conditions: a 10% increase of operations cost of SN entities makes less than 0.3% impact, and 

increases in operations time make less than 3.1% impact. Among all the consumer regions, region 7 reports the 

highest increment in per-unit TSNC and region 4 reports the highest increment in LT. 

Additionally, compared to sensitivity analysis 1, the 10% increment of operations cost and time of downstream 

SN entities make a higher impact on LT than on the per-unit TSNC. Accordingly, these results indicate that 10% 

increase of operations cost and operations time of SN entities resulted in a 0.16% increase of per-unit TSNC and 

a 1.62% increase of LT on average. 

 Sensitivity analysis 4: increasing the operations cost and operations time of selected 

SN entities 

In this experiment, a sensitivity analysis was performed by increasing both 𝑃𝐶𝑖𝑗𝑘 and 𝑃𝑇𝑖𝑗𝑘  of selected SN entities 

by 10%. The purpose of this experiment is to find the impact of individual SN entities on the overall SN 

performance. As mentioned above, SN entities subject to this analysis were the most promising ones in the 

baseline model. For demonstration purposes, the product-market profile of consumer region 1 was considered in 

this analysis.  

Table 5.19 presents the results of the sensitivity analysis performed by increasing the operations cost and 

operations time of selected SN entities. The reported results indicate that the increased 𝑃𝐶𝑖𝑗𝑘  and 𝑃𝑇𝑖𝑗𝑘  of 2nd tier, 

SN entities in the supply stage resulted in the highest increment in per-unit TSNC and LT. However, the 

percentage difference in SN performance (both per-unit TSNC and LT) is less than 2%. When the SN entities are 

ranked considering the percentage difference in SN performance, Agent ID 142 is the highest, then Agent ID 128, 

followed by Agent IDs 267, 4112 and 119. All other SN entities make a less than 0.1% difference in per-unit 

TSNC and less than 1% difference in LT.  

 Summary of the sensitivity analysis results  

Four sensitivity analysis experiments were performed in order to identify the to which SN characteristics the 

overall SN performance is more sensitive. The first three sensitivity analysis experiments were performed to 

estimate the impact of SN stage(s) and the fourth to estimate the impact of SN entity(ies) on overall SN 

performance. 
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The impact of SN stage was identified by increasing the operations cost and operations time of all SN entities by 

10% in each stage. The results of those sensitivity analyses indicate that the overall SN performance is more 

sensitive to the upstream SN stage (i.e., supply stage), than the midstream (i.e., the manufacturing stage) and the 

downstream (i.e., the distribution stage). The 10% increment of operations cost of SN entities in supply, 

manufacturing and distribution stage resulted in 10.17%, 0.13% and 0.16% increment in per-unit TSNC 

respectively. The 10% increment of operations time of SN entities in supply, manufacturing and distribution stage 

resulted in 5.7%, 2.3% and 1.62% increment in LT respectively.  The results of the fourth sensitivity analysis 

indicate that the overall SN performance is more sensitive to SN entities in the 2nd tier supply stage, followed by 

SN entities in 1st tier supply stage and the distribution stage. However, the percentage difference in SN 

performance against the baseline model is less than 2%.  

 

 

Table 5.19: Simulation experiment results -  Sensitivity analysis 4 

Instance 
Selected 

SN entities 

Baseline model 

(average & range) 

Sensitivity analysis 4 

(average & range) 
% difference No. of 

Pareto-

optimal 

SNCs 
TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 119 

890 

[877,902] 

99 

[93,105] 

900 

[887,913] 

98 

[93,103] 
-1.1 +1.0 17 

2 128 
899 

[884,914] 

101 

[95,106] 
-1.0 -1.5 19 

3 142 
900 

[885,914] 

101 

[95,106] 
-1.1 -1.5 24 

4 252 
890 

[877,902] 

100 

[94,105] 
+0.1 -0.5 22 

5 267 
892 

[877,906] 

101 

[96,105] 
-0.2 -1.5 15 

6 278 
891 

[879,903] 

98 

[93,103] 
-0.1 +1.0 19 

7 288 
891 

[878,903] 

99 

[93,105] 
-0.1 0 20 

8 294 
891 

[878,903] 

99 

[93,105] 
-0.1 0 16 

9 3106 
890 

[878,902] 

100 

[93,107] 
0 -1.0 16 

10 4112 
889 

[878,900] 

101 

[94,107] 
+0.1 -1.5 14 

 

 

Table 5.33: Simulation experiment results -  Sensitivity analysis 4 

Instance 
Selected 

SN entities 

Baseline model 

(average & range) 

Sensitivity analysis 4 

(average & range) 
% difference No. of 

Pareto-

optimal 

SNCs 
TSNC 

(dollars) 

LT 

(days) 

TSNC 

(dollars) 

LT 

(days) 
TSNC LT 

1 119 
900 

[887,913] 

98 

[93,103] 
-1.1 +1.0 17 

2 128 
899 

[884,914] 

101 

[95,106] 
-1.0 -1.5 19 
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 Chapter summary 

This chapter presented a detailed description of the case study of the refrigerator SN used to test the proposed 

MAOM. An array of simulation experiments (i.e., verification, scenario analysis and sensitivity analysis) were 

carried out: first, to verify the model, and then to test the robustness of the model in the face of uncertainties and 

dynamics, and finally to identify the changes in which SN characteristics, the overall SN performance is more 

sensitive. 

The proposed MAOM was verified using the ‘debug mode’ of the MATLAB 2016b, and the behaviour of the 

agents was examined by plotting and examining the output of the decisions of the AU agent, physical agents, and 

the OPT agent. Seven scenario analysis experiments were carried out to test the robustness of the MAOM. While 

the first three scenario analyses focused on SN uncertainties, the next four analyses focused on SN dynamics. The 

impacts of SN uncertainties and SN dynamics on SN performance were found to be less than 5% and 2% 

respectively, thus confirming the robustness of the proposed MAOM. When the three scenarios related to SN 

uncertainties were individually analysed, results indicate that the upstream SN stage has a higher impact on SN 

performance compared to the baseline SN, followed by the downstream stage and finally the midstream stage. 

The next three experiments focused on SN dynamics considering disrupted SN entities. Results of those 

experiments indicate that when the disrupted SN entity(ies) are among the best SN entities as per the baseline 

results, the new, disrupted, SN performances have an increased per-unit TSNC and LT, and also, the total energy 

consumption is higher than the baseline model. However, the change in SN performance is less than 2% in all the 

disrupted instances. Finally, the analysis of uncertainties related to product-market profile attributes indicates that 

the product-market profile with an increased volume (compared with the baseline model), resulted in increased 

per-unit TSNC and LT. Collectively, these scenario analyses confirmed that the proposed MAOM is sufficiently 

robust in the face of SN uncertainties and SN dynamics.  

Four sensitivity analysis experiments were conducted, changing the attributes of the SN entities, to identify to 

which SN stage(s) and SN entity(ies), the SN performance is more sensitive. Results reveal that the most sensitive 

SN stage is the upstream stage, followed by the midstream stage and finally, the downstream stage. The fourth 

sensitivity analysis performed on the product-market profile in consumer region 1 and results indicate that SN 

entities in the 2nd tier upstream stage make a higher impact on SN performance, followed by SN entities in 1st tier 

upstream stage and the distribution stage.  
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 DISCUSSION 

 Introduction  

This chapter presents the discussion of the findings of this study, including an account of how these findings relate 

to those of the comparable previous studies. The review of SN literature, as presented in Section 2.4, identified 

the need for considering SNC decision-making, mainly, in order to overcome the limitations of current SN design 

research that does not adequately address a number of challenges associated with dynamic and evolving SNs. 

Furthermore, there is a crucial need to leverage the complementary strengths of SN entities while addressing the 

challenges of aligning strategic goals, process integration, information sharing, and effective coordination and 

communication across the SC, which are critical to delivering customer value. Aptly responding to changing SN 

conditions such as market turbulence and shifting product-market profiles remains a major challenge for many 

organisations.  

Despite the potential of SNC decisions to provide effective solutions to such practical problems, the research 

devoted to supporting SNC decisions is quite limited, particularly compared to the extent of available literature 

on SN design. As it has been presented in Chapter 2, the majority of previous SNC studies have modelled SNs as 

highly abstract problems and assumed deterministic and static SN contexts. Nonetheless, a few studies have dealt 

with SNC decisions at a reasonable level of detail, while also accounting for changing SN conditions; the findings 

of these studies will be further discussed in this chapter. 

This chapter is arranged as follows: with the aim of providing the context for the discussion of the findings of the 

study, Section 6.2 presents a discussion of the simulation results and key findings. In Section 6.3, the key aspects 

of the methodological approach employed in this study are evaluated against those of the extant literature. In 

Section 6.4, the significance of the modelling approaches and solution methodologies used in this study is 

discussed and compared with those used in the extant literature in terms of the comprehensiveness of the 

incorporated SN characteristics (i.e. structural, spatial and temporal), and considering the types and range of SNC 

decisions, the number of SNC objectives modelled, and the modelling approaches and solution methodologies 

used. Finally, the chapter summary is presented in Section 6.5.  
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 Discussion of the simulation results and key findings  

The proposed MAOM considered a multi-stage, multi-echelon SN consisting of geographically dispersed and 

distinct SN entities catering to different product-market profiles. Intelligent auctioning and bidding strategies were 

employed to enable SN entities to make competitive bids (in terms of operations cost and operations time) based 

on the knowledge gained through their past bidding experience. These bids were then considered in generating 

alternative optimal SNCs for each product-market profile using NSGA-II. The proposed MAOM was tested using 

a case study of a refrigerator SN which consisted of three stages, five echelons, 18 nodes and 120 SN entities. As 

presented in Chapter 5, three types of simulation experiments were carried out to generate SNCs for different 

product-market profiles under different organisational and environmental conditions. First, a baseline model was 

run under static and deterministic SN conditions, which represented the conditions reflected in the majority of 

extant literature. Then both scenario analysis and sensitivity analysis were performed to examine the deviations 

from the baseline model, in the behaviour of SNCs under uncertain and dynamic conditions. An another set of 

scenario analysis experiments were carried out to test the robustness of the MAOM; and sensitivity analyses were 

performed to estimate the extent to which the SN-level performance is vulnerable to the changes in the attributes 

of SN entities collectively in each stage and individually as entities of the SN.    

Simulation results show that under static and deterministic SN conditions, the unit SN cost for delivering 

refrigerators to many consumer regions is about the same, but the lead-times are quite different. These results 

explain that SN entities in the existing SN are geographically located optimally to satisfy the product-market 

profiles of different regions. Additionally, the operations cost and operations time attributed to these SN entities 

are comparable with respect to achieving the same SN-level performance for each product-market profile. Results 

further show that the number of optimal SNCs (in the optimal Pareto-front) to cater for a given product-market 

profile varies from region to region. This could happen due to having a comparatively higher number of capable 

SN entities available to choose from in certain regions. Out of such optimal SNCs, the most suitable SNC to cater 

for the respective region was selected considering energy consumption as an additional target criterion, 

representing the SN sustainability perspective. Results showed that three SN entities representing sourcing nodes 

1, 2 and 3 were common to all the product-market profiles and other nodes had more than one SN entity serving 

the relevant product-market profile. This indicates that the attributes of those selected SN entities, in terms of 

operations cost, operations time, and energy consumption, are better than those of the remaining SN entities. All 
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the above findings indicate that under static and deterministic conditions, the selected SN entities are located 

optimally with the required capacities in terms of operations cost and operations time, to cater for each product-

market profile.  

Scenario analysis and sensitivity analysis experiments were conducted to examine the extent to which the 

uncertainties and dynamics in the SN environment make an impact on SN-level performance. A set of experiments 

was designed, giving particular attention to the different SN stages, to examine the impact of uncertainties and 

dynamics in each stage on the overall SN-level performance. This analysis is mainly driven by the notion that the 

performance of every stage is equally important as a failure in one stage or one SN entity will make an adverse 

impact on the overall SN performance (Flynn, Huo & Zhao 2010; Ballou, RH 2001). Furthermore, a range of 

issues has been cited in the SN risk management and SN performance related literature as possible factors that 

could affect SN performance. These issues include inefficient logistic network designs, coordination issues, 

unreliable and uncertain suppliers/service providers, disruptions and inefficient logistics planning (Esmizadeh & 

Parast 2020; Namdar, Sawhney & Pradhan 2018; Prajogo, Oke & J Olhager 2016). To address these issues, a 

number of strategies (e.g. multiple sourcing and outsourcing, back-up supplier contracts) pertaining to logistics 

network design, analytical and numerical modelling and the development of algorithms to account for 

uncertainties, have been proposed in the literature (Govindan, Fattahi & Keyvanshokooh 2017; Snyder et al. 2016; 

Li & Barnes 2008). SNC decisions can be considered as a holistic approach to deal with many of the above 

problems. However, as uncertainties and disruptions still could make an impact on SNC decisions, they were also 

examined using scenario analysis and sensitivity analysis. Findings of these experiments can provide useful 

insights in relation to contingency planning or the development of risk mitigation strategies under such conditions.  

In scenario analysis, the uncertainties associated with SN entity attributes due to factors such as differences in 

tariff and the introduction of new technologies may be measured by the variation of operations cost and operations 

time. When the three scenarios related to SN uncertainties were individually analysed, the results indicated that 

the upstream SN stage makes a higher impact on SN-level performance, followed by the downstream SN stage 

and finally the midstream SN stage. These results could be explained in two different ways: the one is, depending 

on the number of SN entities that make up the respective SN stage, their resultant cumulative impact could be 

higher than the baseline conditions; and the other is, the higher variability associated with the attributes of certain 

SN entities could create a higher impact. This type of uncertain situation has been dealt with in the SN literature 

by adopting risk mitigation strategies, including contingency plans (Knight, Pfeiffer & Scott 2015). For instance, 
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the upstream SN stage can be strengthened in terms of: having close relationships with prominent suppliers 

involving longer-term contracts or agreements to avoid price fluctuations; initiating relationships with new SN 

entities to expand the supply base; and closely monitoring the performance of existing SN entities (Arunachalam, 

Kumar & Kawalek 2018; Li & Barnes 2008; Hingley 2001).  

SN dynamics were tested assuming the absence (loss) of the most prominent/popular SN entities (i.e. the SN 

entities that are common across multiple SNCs in the network) for a given planning period. Results indicate that 

when the disrupted SN entity(ies) is among the prominent SN entities, the overall SN-level performance is 

reduced. The impact that could occur in similar instances has been widely discussed in the SN risk management 

literature with various strategies being proposed to mitigate the risks associated with such disruptions (Hingley 

2001). The analysis indicates that considerable attention needs to be placed on prominent SN entities to avoid 

potential losses. Those SN entities could be treated on a priority basis depending on the impact that they could 

make on SN performance. Additionally, SN entities can be analysed with respect to their attributes (e.g., location) 

and relevant environmental factors (e.g., economic, political). For example, for a particular SN entity, the 

probability of being disrupted might be high due to region-specific environmental factors such as political and 

economic conditions. Accordingly, in such situations, appropriate risk mitigation strategies such as seeking new 

SN entities from different regions or selecting SN entities from the current pool with similar capacities can be 

pursued (Namdar et al. 2018).  

Sensitivity analysis estimated the extent to which the SN-level performance is vulnerable to changes in the 

attributes of SN entities collectively in each stage and/or individually as entities of the SN. It was revealed that 

the SN performance was most vulnerable to changes in the upstream SN stage, followed by the midstream SN 

stage and finally, the downstream SN stage. Additionally, SN entities in the 2nd tier upstream stage make a higher 

impact on SN performance, followed by SN entities in the 1st tier upstream stage and the downstream stage. 

Analysis of these results identified two potential reasons: first, the number of SN entities that make up the 

respective SN stage, and second, a higher operations cost and operations time associated with certain SN entities, 

could have a higher impact on TSNC/LT. To mitigate the impact of risk associated with susceptible SN entities 

in these instances, new competitive SN entities and new locations/regions for respective suppliers can be 

investigated considering raw material cost or labour cost (Li & Barnes 2008; Hingley 2001). 

The results of the simulation experiments of this study confirmed that SN performance can vary due to factors 
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such as the number of SN entities that make up the different stages of a particular SN, their attributes such as 

location, operations cost, operations time and their changes over time. These factors represent the structural, 

spatial and temporal dimensions of a SN. Additionally, these experiments further showed that configuring the SN 

under static and deterministic conditions alone would not address the challenges faced by SN decision-makers in 

a real-world business context. Hence, investigating the SN performance in changing SN conditions using scenario 

analysis and sensitivity analysis was found to be useful.  

By comparison, none of the studies in the extant SNC literature has tested the SNC configuration problem 

considering all three dimensions, i.e., structural, spatial, and temporal concurrently, and at the level of detail that 

has been tested in this study. Therefore, there is limited opportunity for direct comparison of the results of this 

study against those of the studies referred to above. As such, a concerted effort was made to compare both the 

approaches used, as well as the results obtained against those of the comparative studies, subject to the said 

constraints.  

 Evaluation of the methodological approach employed     

This section evaluates the key aspects of the overall methodological approach employed in this study against those 

of the extant literature.  

When the methodological approach used in this study is compared to those of similar/comparable studies in the 

extant literature, attention is drawn to two sets of studies. The one set of studies developed SNC models in a static 

and deterministic SN context and with comparatively the same level of SN complexity used in this study; i.e., 

with similar numbers of nodes (around 40) and SN entities (around 100). The other set of studies dealt with 

different forms of changing SN conditions, including the attributes and behaviour of SN entities, however, the 

proposed models were tested with comparatively simple SNs to those used in this study; i.e., with less than five 

nodes and less than 20 SN entities. 

In the first set of studies, apart from having the above-mentioned common characteristics such as rather complex 

SNs, and a static and deterministic SN context, those models acted as centralised decision-making units optimising 

one or two objectives. These models were solved or SNC(s) generated using different meta-heuristics algorithms. 

For example, Moncayo-Martı´nez and Zhang (2011) developed a multi-objective (i.e., TSNC and LT) SNC model, 

which was tested on a bulldozer assembly SC consists of three products (wheel loader, track loader, and track-
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type tractor) where many assembled components are common to all three products with 38 SN nodes and 105 SN 

entities in the SN. The proposed model was solved using ACO comparing the algorithmic solutions generated by 

a single pheromone matrix (i.e., having a single matrix for both cost and time) and multi-pheromone matrix (i.e., 

having two matrices, both cost and time). They compared the solution quality in terms of SN-level performance 

and convergence rate and concluded that the performance of the algorithms under both algorithmic settings are 

similar. They found that SNs which handle a family of products can be effectively configured using meta-

heuristics. Moncayo–Mart´ınez,  Ram´ırez–L´opez and Recio (2016) developed a multi-objective SNC model 

which was tested on a brake and clutch assembly SN with  29 SN nodes and 75 SN entities. The proposed model 

was solved using both IWD and ACO, each running for 15 times. A number of simulations were performed to get 

the best algorithmic parameter settings, and both algorithms were terminated with a set of defined criteria to arrive 

at trade-off solutions. They concluded that IWD outperformed in terms of solution quality with better non-

dominated solutions than the ACO. Mastrocinque et al. (2013) developed a multi-objective SNC model that was 

solved using Bees algorithm. This model was tested on a similar case study to what was proposed by Moncayo-

Martı´nez and Zhang (2011). They performed eight experiments to find optimum parameters for bees algorithm, 

and then the solution obtained using those algorithmic parameter settings were compared with the solution of 

ACO in Moncayo-Martı´nez and Zhang (2011). The comparison showed that the bees algorithm is a more 

powerful tool for finding a  Pareto-optimal solution. This set of studies found that the performance of meta-

heuristics algorithms are different to each other, however, they are capable of dealing with the structural dimension 

of SNs. Even though these studies dealt with static SN contexts, the importance of accommodating the 

uncertainties to find more robust SC designs have been identified.  

The other set of studies has dealt with a different form of changing SN conditions testing the models on rather 

simple SNs. Apart from that those models acted as distributed decision-making units optimising a single objective. 

For example, Akanle and Zhang (2008) modelled SN in the form of a MAS, while incorporating changing 

production capacity levels of SN entities within a dynamics SN context. The best combination of SN entities for 

each customer order was identified through a coordinated iterative bidding process supported by GA. They tested 

the proposed model on a laptop assembly SN which has 16 nodes and 33 SN entities. First, they configured the 

SN for 30 orders individually and then a clustering algorithm was used to find a common set of SN entities to 

cater to any order. Accordingly, this study found their proposed approach is capable of finding a common SNC 

which is stable and reliable to deliver customer orders at the lowest possible cost while dealing with SN dynamics. 
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Sheremetov and Rocha-Mier (2008) also modelled a SN in the form of a MAS evaluating SN-entity level decisions 

at SN-level using RL algorithms. The developed model represented a small SN consisting of four nodes and nine 

SN entities. Wang and Shu (2007) modelled the SNC problem in a context that each SN node has multiple SN 

entities that differ in terms of their operations costs and lead times. They have accounted for uncertainty in relation 

to lead times of SN entities and the consumer demand using a fuzzy set modelling approach. GA approach was 

used to determine the SC configuration. The proposed approach was tested on the case study of notebook computer 

SN proposed by Graves and William (2005), which has also been used by many other authors for testing their 

models. An index was used to characterise the risk attitude of the decision-maker, in relation to calculating the 

lead-time. Experiments were carried out to examine the effects of varying risk attitude indices on the SC 

configuration and inventory policies. Risk attitude index, which is called “optimism-pessimism index” was varied 

from 0.3 to 1.0 representing “risk-taking” to “risk-averse” decision-makers. For each value, GA was run five 

times, and the results indicated that TSNC increases with the risk attitude index. Accordingly, a decision-maker 

can select a SNC performing trade-off analysis between lead-time, cost and investment in inventory. They found 

that the most optimistic decision-maker ended-up selecting low-cost SNCs, whereas others selected high-cost 

SNCs. Greco et al. (2013) adopted Bayesian decision networks and modelled the SN as a tree using MAS where 

agents represent SN entities. The entire SN was configured by the successful creation of sub-chains (which consist 

of upstream SN entities) by each SN entity considering both the reputation and selling price for the product. The 

reputation of SN entity was determined by analysing the previous experience of collaborations with trading 

partners. Selling price was determined by each agent based on both the expected minimum profit and the past 

experience in bidding. Depending on the success or failure of the previous bid, the agent increased (subject to the 

number of previous successful bids) or decreased (subject to the cost of production) the selling price. The proposed 

model was tested on a SN, which has five SN nodes and 21 SN entities. A simulation was run for 100 times letting 

agents learn through negotiation and select a SNC. They found that through the learning process, SN entities make 

better SNC decisions. The model developed by Ruiqing, Tang and Matsukawa (2014) was the only study to 

account for SN disruptions in the context of making SNC decisions. In their approach, first, the SNC was 

developed in a static context, and then the impact of SN disruptions to SNC decisions was tested using scenario 

analysis with a given probability of holding the functioning of SN entities at each stage. Three methods were used 

in generating SNCs, namely, the minimum unit manufacturing cost heuristic, the minimum lead-time heuristic 

and global optimisation method. They considered two scenarios of SN disruptions; the one with safety stock and 

the other without safety stock. They presented the results of one simulation experiment by setting a 5% disruption 
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probability for stage 5 of the SC. In the first scenario, TSNC was increased by 0.8%, and in the second scenario, 

TSNC was increased by 3.58%. They found that testing the model for multiple scenarios helps make SNC 

decisions that align with organisational goals. Even though these studies have considered SN uncertainties and 

modelled them in different ways to arrive at more realistic SNC solutions, those models were still not tested for 

structurally complex networks.  

The previous studies mentioned above were found to have certain practical limitations in relation to their 

application in a real business context due to not addressing the structural, spatial and temporal dimensions at an 

adequate level. This observation is further verified by their simulation experiment results, recommendations and 

future research directions, as stated in the relevant publications. When comparing the simulation experiments of 

this study with those of the existing studies, it was further confirmed that incorporating structural, temporal and 

spatial dimensions into SNC models led to more realistic SNC(s) thus resulting in practical and useful solutions. 

This study further focused on examining how the above factors were incorporated into modelling SNCs towards 

achieving optimal SN-level performance when individual SN entities were still aiming to satisfy their local goals, 

such as organisation-specific competitive priorities. This was achieved by implementing intelligent auctioning 

and bidding strategies to make competitive bids by SN entities which, in turn, lead to improved SNC decisions, 

thereby enhancing SN-level performance.  

 Significance of the modelling approaches and algorithms used  

This section articulates the significance of the modelling approaches and solution methodologies used in this 

study, in light of those used in the extant literature. To this end, the overall methodological approach adopted in 

this study is  first discussed in terms of the comprehensiveness of coverage in this study (in terms of both the 

breadth and depth) with regards to the: 

(i) SN characteristics (i.e. structural, spatial and temporal) incorporated;  

(ii) SNC decisions modelled;  

(iii) SNC objectives considered; and 

(iv) modelling approaches and solution methodologies.  
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By covering the above factors when modelling the SNC decisions, the study endeavoured to enhance the 

applicability and usefulness of the proposed MAOM, as well as the rigour of the solution approaches derived, in 

relation to the real-world SN contexts. The level of comprehensiveness with respect to the above aspects 

determines the extent to which the developed models: represent the real-world problem contexts and SNC 

decisions, meet the modelling objectives and the choice of modelling methods, and provide solution 

methodologies to generate practical solutions.   

Modelling SN characteristics: This study considered a conjoined SN structure having multiple echelons in both 

upstream and downstream of the SN, while accounting for the geographical locations of SN entities.  Most of the 

structures used in the existing SNC models have considered either convergent (e.g. Jiao, You and Kumar 2006) 

or conjoined (e.g. Moncayo–Martínez & Mastrocinque 2016) structures. Even though such structures consider 

multiple echelons in the upstream, downstream entities are not dealt with to the same extent. The only study that 

has considered a multi-echelon downstream SN is Truong and Azadivar (2005), where distributors and retailers 

have been incorporated into intermediate echelons.  

Modelling the spatial dimension in the context of SNC decisions is one of the contributions of this study. This 

was achieved in three ways: i.e., (i) incorporating geographical factors in deciding SN entity attributes; (ii) 

generating distinct product-market profiles to represent the market conditions and customer preferences associated 

with different geographical regions; and (iii) accommodating transportation-related cost and time by considering 

the distance between SN entities. This study has modelled the SN entity attributes (i.e., operations cost and 

operations time) with respect to the social, environmental and economic conditions of the geographical region in 

which they are located. For example, labour cost of a country was used as a proxy to estimate the operations cost, 

and the competitive index and annual growth rate of high technology usage were used to estimate the operations 

time. Additionally, the distance between respective upstream/downstream SN entities is considered as a decision 

making parameter when selecting SN entities for a particular product-market profile. Even though the SN 

literature has identified that having developed SNC models to accommodate the spatial dimension is one of the 

most important aspects, the spatial dimension has not been incorporated into SNC models explicitly at the level 

of detail (i.e., determining SN entity attributes, estimating the product-market profiles, accounting transportation 

cost and time between SN entities) they have been dealt with in this study. Some SNC models have not considered 

the spatial dimension at all. They have assumed that transportation cost and time between SN stages are fixed, 

regardless of which immediate downstream SN entity is selected by the upstream SN entity (Akanle & Zhang 
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2008). Another cluster of SN literature accommodates the spatial dimension in finding facility location, 

considering one or few aspects, including transportation cost and time between SN entities,  location-specific 

characteristics such as risk involved, low manufacturing cost, tariff and concessions  (Meixell & Gargeya 2005). 

Nevertheless, studies that have developed product-market profiles taking the geographical characteristics into 

consideration were non-existent.  

Most of the studies have configured SNs based on two attributes of SN entities (i.e. operations cost and operations 

time), and these attributes have been assumed to remain the same over time. Additionally, SN dynamics have 

hardly incorporated into modelling. These limitations indicate the lack of attention to the temporal dimension 

regardless of importance in accomodating into decision-making. This study has adopted a few strategies to model 

the temporal dimension into SNC decision-making. Given that the type of SNC decisions modelled in this study 

are considered at strategic and tactical planning levels (which typically spans between 1 to 5 years), the modelling 

approach used a series of static simulation runs to mimic the evolution (i.e. change of state) of SN entities across 

these planning periods. As per this approach, the varied product-market profiles are first created to account for 

the changed market conditions at different strategic planning periods. These profiles are then used for setting up 

separate simulations to configure the corresponding SN. Accordingly, each SN entity reviews their production 

capacity levels at the end of each period when bidding for the relevant product-market profile. 

Modelling SNC decisions: This study holistically addressed SNC decisions, including supplier selection and 

facility location, at both midstream and downstream having considered multiple echelons. A similar attempt has 

been made in the existing SNC models, however, they did not consider downstream with multiple echelons as is 

observed in practice. The choice of transport mode (limited to the downstream) is another SNC decision 

considered in the existing literature, however, this was not incorporated in this study; mainly because the unit 

transportation cost/time of available transportation modes for this type of good is not substantially different 

(Kiesmüller, De Kok & Fransoo 2005). Instead, the distance between SN entities (which was not accounted for in 

the SNC literature at all) was considered in this study as it contributed significant time/cost to overall SN-level 

performance (Akanle & Zhang 2008).  

SNC objectives: This study considered cost, lead-time and selected sustainability metrics as SN-level performance 

measures. The majority of SNC models proposed in the existing literature have focused on a single objective (i.e. 

SN cost), except for a few studies that have considered lead time along with cost, while formulating the SNC 
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problem as of a multi-objective optimisation type.  

Modelling approaches and solution methodologies used: This study incorporated both individual SN entity 

decisions and SN-level decisions in a way that modelled the decisions of the SN entities and evaluated the impact 

of those decisions at the SN-level. This was achieved using a MAS-based optimisation approach in combination 

with intelligent auctioning and bidding strategies. As reported in Chapter 2, the vast majority of the existing SNC 

models fall short of comprehensively capturing industry requirements such as SN characteristics, dealing with the 

changing SN conditions, and accounting for multiple SN-level performance measures that reflect diverse 

consumer needs (Fiedler, Sackmann & Haasis 2019; Shukla & Patel 2019). The majority of the SNC models 

proposed in the literature have addressed decision-making at the SN-level with no attention to the individual 

decisions of SN entities. Accordingly, many studies have formulated the SNC problem as a combinatorial 

optimisation problem (adopting a centralised decision-making approach) assuming that one (dominant) decision-

maker acts to select the best set of SN entities (from all SN nodes) to achieve the expected SN-level performance. 

This way of modelling only partially addresses the SNC problem with little or no recognition of the real-world 

situation that SNs are formed as a result of multiple organisational entities collaborating to deliver an end product 

and/or service. Among the limited body of SNC literature, a few studies have attempted to address these needs 

from several different perspectives. 

Akanle and Zhang (2008) have holistically addressed the SNC decisions involved across the SC. In their study, a 

typical SN was modelled in the form of a MAS, and incorporating changing production capacity levels of the SN 

entities within a dynamic SN context. The best combination of SN entities for each customer order was identified 

through a coordinated iterative bidding process. A set of reserve values (i.e. virtual prices for each node and a 

minimum virtual profit level for each SN entity), referred to as control parameters, were generated using a GA, 

upon which SN entities presented their bids given the condition that each SN entity maintained the minimum 

desired profit level. The chromosome used in the GA was a vector (i.e. a set of genes), which consisted of a full 

set of virtual prices for each SN node and a minimum virtual profit level for each SN entity. If a SN entity had the 

required production capacity, then operations cost and operations time were determined, and bids were presented 

for the invitation. Out of all winning bids, a combination of SN entities was formed, and then the combined 

performance was evaluated in terms of the total SN cost and lead-time. After evaluating the SN performance as 

to whether the due date has been met or the total SN cost is lower than the threshold, the bidding process continued 

by adjusting the virtual prices and minimum virtual profits for a given number of iterations in order to find an 
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optimal set of SN entities.  

By comparison, alternative bidding strategies have been employed by a number of studies including Wang et al. 

(2009); Jiao, You & Kumar (2006) and Lou, Chen & Ai (2004).  These studies have used negotiation protocols 

such as argumentation-based negotiation (Wang et al. 2009), CNP with negotiation (Jiao, You & Kumar 2006) 

and case-based reasoning with CNP (Lou, Chen & Ai 2004). These protocols have their distinct advantages and 

limitations. Jiao, You and Kumar (2006) proposed an improved version of CNP by introducing a multi-contract 

negotiation process with multiple agents to negotiate with multiple SN entities. In their study, SN entities were 

selected based on their utility, which is a measure of goodness of the bid with respect to customer order 

requirements. If any of the selected SN entities was not compatible with the other SN entities in meeting the 

customer requirements, then the negotiation occurred iteratively until the consumer requirements were met. This 

multi-contract negotiation strategy expedites the decision-making process, thereby configuring the SN within a 

relatively short time. Furthermore, through the communication between negotiation agents, the proposed approach 

could enhance SN-level performance as well. Lou, Chen and Ai (2004) used case-based reasoning with CNP in 

order to enhance coordination efficiency. This method maintained a database (i.e., information on SN entities 

fulfilling a given order) of past fulfilled orders, referred to as cases. Once a new order was received, the 

requirements of that order were first compared against those of the cases in the database. Then depending on the 

availability of similar cases in the database, the same set of SN entities were used for the new order; otherwise, 

the steps of the general CNP were followed to find a set of suitable alternative SN entities. The compatibility of 

these SN entities across the SN was tested using an index for the coalition (which is calculated considering the 

payoff to the agent and cost of operations) subject to a set of constraints related to lead-time, cost and resource 

availability. 

The main difference between the study of Akanle and Zhang (2008) and the other three studies referred to above 

is the way the bidding process was executed. Akanle and Zhang (2008) adopted a holistic approach to executing 

the bidding process with the participation of all SN entities simultaneously. The primary intention of this type of 

parallel bidding was to achieve SN-level optimisation. In contrast, the other studies adopted a cascading/tree-like 

structure, continuing the bidding process until the downstream SN entity had met the requirements of the upstream 

SN entities in terms of their local goals (e.g. profits). Through the cascading bidding process, a SN entity gets an 

opportunity to optimise its local goals without paying attention to achieving SN-level goals. There are a few other 

aspects worth considering in the models that adopted a cascading/tree-like bidding structure. For example, the 
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study of Greco et al. (2013) used Bayesian network modelling to model the adaptive behaviour of SN entities in 

a way that incorporates the past bidding experience in subsequent bidding decisions. In comparison to other SNC 

models, using past experience in making bidding decision informs the way of accommodating the learnt 

knowledge in decision making.  

By comparison, Sheremetov and Rocha-Mier (2008) did not use a bidding mechanism in selecting SN entities. 

Instead, they employed collective intelligence theory in evaluating the effects of adaptive behaviours of SN 

entities at the SN-level performance. A RL algorithm was used to model the decisions of SN entities with a local 

utility function and a Q-value, which contained perceived information about the environment. A generalised 

version of the Q-neutral algorithm was used for optimising SN-level performance. This is the only study found in 

the literature, which made an attempt to evaluate SN entity decisions at the SN-level.  

The comprehensive approach used to develop the proposed MAOM in this study was inspired by the study of 

Akanle and Zhang (2008) and Sheremetov and Rocha-Mier (2008). The intelligent reverse-auctioning and bidding 

process was employed in this study; adapting the mechanism used by Akanle and Zhang (2008) with certain 

modifications in relation to the learning through the previous bidding and following multiple strategies to make 

situational bidding decisions. Instead of using the “virtual profit”, as determined by the central system, the 

proposed approach in this study allowed each SN entity to decide its own profit margins using its previous 

knowledge to calculate the bids, this enabled a more realistic representation of the autonomous behaviour of 

individual SN entities. This study only used a set of reserve values generated using GA as a means of selecting 

potential SN entities through the auctioning processes. Additionally, multiple strategies were followed as indicated 

in Figure 4.5 in making the bidding decisions. This reverse-auctioning process was continued, with learning 

through the bidding process, until the termination criteria were met. Q-learning, one of the RL algorithms, was 

used to make the bidding process-related decisions taking into consideration the non-deterministic nature of the 

SNC problem and the variability associated with the behaviour of SN entities. The Q-learning has a value iteration 

process by updating the Q-function in the Q-table using the reward gained from the selected action at a given 

state. The Q-function helps in predicting the best action in a given state to maximise the cumulative reward. In 

this study, the Q-table (as given in Table 4.1) was defined in the form of a matrix to store capacity levels and 

profit ranges (i.e., state-action). Although this study was inspired by the Q-learning used in Sheremetov and 

Rocha-Mier (2008), it adopted a more comprehensive approach, which includes parameters, conditions and 

constraints to simulate real-time decision-making. While Q-learning helps to achieve the goals of SN entities 
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through making bidding decisions, those decisions were evaluated at the SN-level generating optimal alternative 

SNCs in order to meet the target product-market profile requirements. 

From a mathematical point of view, the problem of finding optimal alternative SNCs belongs to the combinatorial 

optimisation type, which cannot be solved with an exhaustive search approach in polynomial time. Sheremetov 

and Rocha-Mier (2008) used a Q-neutral algorithm to configure the SN minimising the TSNC; a number of other 

studies (as mentioned in Section 6.2) used different meta-heuristic/evolutionary algorithms. This study employed 

NSGA-II (as outlined in Figure 4.16), one of the most popular multi-objective optimisation algorithms (Deb et al. 

2001) and also proven to outperform other algorithms in computational efficiency and the solution quality 

(Godinez, Espinosa & Montes 2010; Niyomubyey et al. 2020).  

 Chapter Summary 

This chapter has presented the discussion of the findings of this study, including an account of how these findings 

relate to those of the comparable previous studies. The key findings of this study can be summarised as follows: 

 SN-level performance varies with SN characteristics in terms of structural, spatial and temporal 

dimensions, which were also found to be important to consider in making the SNC decisions 

 SNC decisions under static and deterministic conditions alone do not address the challenges faced 

by SN decision-makers in a real-world business context  

 Individual SN entities are adaptive, aiming to satisfy their local goals, which in turn leads to 

differences in SN-level performance 

 Intelligent auctioning and bidding strategies enable SN entities to make competitive bids under 

changing SN conditions, which in turn, lead to improved SNC decisions, thus enhancing SN-level 

performance without having to share commercially sensitive information among all entities 

across the SN 

 SNC decisions are different under static and dynamic conditions; hence, to configure the SN 

optimally, SNC decisions need to be tested under changing SN conditions 
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Overall, the study found that incorporating structural, spatial and temporal SN dimensions is important in making 

SNC decisions. None of the studies in the extant SNC literature has tested the SNC configuration problem 

considering all three dimensions concurrently, and at the level of detail that has been tested in this study. 

Accordingly, this study focused on examining how the above factors were incorporated into modelling SNCs 

towards achieving optimal SN-level performance, when individual SN entities were still aiming to satisfy their 

local goals, such as organisation-specific competitive priorities. This was achieved by implementing intelligent 

auctioning and bidding strategies for SN entities to make competitive bids, which in turn, lead to improved SNC 

decisions, and thereby enhance SN-level performance without having to share commercially sensitive information 

among all entities across the SN.  
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 CONCLUSIONS 

 Introduction 

This study developed a comprehensive approach to support SNC decisions that enhance SN-level performance in 

catering for different product-market profiles under changing SN conditions. This chapter concludes the thesis, 

summarising the research effort and findings, and providing some concluding remarks on the research questions 

addressed, followed by an account of the contributions and limitations of this study, as well as with future research 

directions. 

 Summary of the research effort 

SNs evolve in structural, spatial and temporal dimensions due to factors such as advancements in technology and 

information systems, shifting consumer needs, and changing environmental conditions. In the face of these 

changes, the effectiveness of SN design decisions, as represented in current practices, has been increasingly 

challenged, particularly in terms of achieving the desired SN-level performance (Oliveira, Lima & Montevechi 

2016; Gerschberger et al. 2012; Choi, Dooley & Rungtusanatham 2001). In response to the limitations of the 

existing approaches to SN design, researchers have proposed numerous alternatives, including the notion of SNC. 

It is acknowledged in the literature that a well-configured SN can not only leverage the complementary strengths 

of SN partners to deliver better value, but also can utilise their combined capacity towards mitigating risks, 

guarding against disruptions and sustaining performance in dynamic environments. As such, the capacity of a SN 

to deliver superior customer value is largely determined by the way that SN is configured to deal with the 

challenges associated with changing conditions. 

The majority of previous research on SNC has highlighted the potential of well-configured SNCs to leverage the 

complementary strengths of SN entities by virtue of the presence of alternative SN entity options in static and 

deterministic SN contexts.  The review of SNC literature undertaken as part of this study revealed that the 

structural aspect of SNs had been incorporated into existing SNC models to a certain extent, however, limited 

attention was paid to spatial and temporal dimensions. Lack of a comprehensive and realistic representation of SN 

characteristics in current SNC models was another major drawback reported in the literature, which from a practice 
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point of view limits the relevance of such models.  In comparison, this study examined SNC decisions more 

holistically, focusing on both changing SN conditions (i.e., new products, uncertainties and dynamics) and 

leveraging the complementary strengths of SN entities to cater for different product-market profiles in stochastic 

and dynamic SN contexts.  

To address the research problem as stated in Section 1.2, two research questions were set as given below: 

(i)  What are the key factors that underpin SNC decisions? 

 (ii) How can SNC decisions be supported through the identification of SNs that are optimally configured for 

different product-market profiles, under changing SN conditions? 

Limitations in the extant SNC literature were addressed in this study by capturing the more realistic SN 

characteristics to model a multi-stage, multi-echelon SN, consisting of geographically dispersed and autonomous 

SN entities catering for distinct product-market profiles.  Thus, the importance of capturing structural, spatial and 

temporal dimensions in modelling SNs to represent real-world contexts was identified and addressed in this study. 

Accordingly, the aim of this study was to take the above factors into account in the development of a 

comprehensive approach, with the selection of appropriate modelling and solution methodologies, to generate 

alternative optimal SNCs for varied product-market profiles to achieve the expected SN-level performance. This 

aim was achieved through developing the proposed MAOM, which is a MAS-based optimisation approach 

combining intelligent auctioning and bidding strategies. Consequently, the efficacy of the proposed approach was 

tested by assessing its capacity to account for more realistic SN contexts while accommodating the adaptive 

behaviour of SN entities in light of changing SN conditions. The proposed approach was also examined for its 

capacity for evaluating the impact of the decisions made at SN entity level on SN-level performance; i.e., in 

relation to generating alternative optimal SNCs that achieve the expected SN-level performance. 

More specifically, the proposed MAOM was tested using a refrigerator SN case study drawn from the literature. 

Three types of simulation experiments were carried out. First, a baseline model was run under static and 

deterministic SN conditions, which represented the conditions reflected in the majority of extant literature. Then 

both scenario analysis and sensitivity analysis were performed to examine the deviations (from the baseline model) 

in the behaviour of SNCs under uncertain and dynamic conditions. Additionally, a further set of scenario analysis 

experiments was carried out to test the robustness of the MAOM; and further sensitivity analyses were performed 
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to estimate the extent to which the SN-level performance is vulnerable to the changes in the attributes of SN 

entities collectively in each stage and individually as entities of the SN.    

 Summary of findings and conclusions on the research questions  

Even though the importance of SNC decisions in light of the continuous evolution of SNs has been acknowledged 

in the literature, the existing analytics tools were found to be inadequate in terms of providing holistic solutions 

or practical guidance to aid SNC decision-making.   

In relation to the two research questions stated above, it was found that accounting for structural, spatial and 

temporal dimensions is critical to making effective SNC decisions. The study further examined how the above 

three aspects were incorporated into modelling of SNCs towards achieving optimal SN-level performance, when 

individual SN entities are still aiming to satisfy their local goals such as organisation-specific competitive 

priorities. Additionally, attention was paid to SNC decision-making with minimal information sharing among SN 

entities, which recognised the real-world situation of organisations’ reluctance to disclose commercially sensitive 

information. These modelling requirements were facilitated by the intelligent auctioning and bidding strategies, 

which enable the SN entities to make competitive bids under changing SN conditions; these, in turn, lead to 

improved SNC decisions, and the enhancement of SN-level performance. Taking the above conditions into 

account, this study demonstrated the value of the proposed modelling approach in terms of facilitating SNC 

decisions to sustain the competitiveness of SNs in a dynamic business environment, which is characterised by 

changing consumer requirements, as well as the variability associated with SN entity attributes and disruptions.  

 Contributions to knowledge and managerial implications  

The importance of SNC decisions has been widely recognised in the SN literature in relation to building SN 

capacity to be responsive, robust and resilient in the face of changing SN conditions while dealing with the 

inherent complexities of evolving SNs with respect to structural, spatial and temporal dimensions. The review of 

more recent research also revealed opportunities for improving existing SNC models in terms of both their rigour 

and relevance.  

One of the most significant research gaps reported in the literature was the lack of relevance of existing SNC 

models or their limited capacity to represent real-world SNC contexts. As such, this study made an attempt to 
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model SNs in a more realistic problem context, while addressing multiple factors covering the structural, spatial, 

and temporal dimensions. Accordingly, a multi-stage, multi-echelon SN was modelled that considered the 

autonomous decision-making and spatial distribution of SN entities and incorporated changing SN conditions. 

The majority of the existing literature had assumed that SNs are formed as a result of centralised decision-making, 

which in turn has influenced the modelling and solution approaches employed to solve the SNC problem. The 

vast majority of previous studies have solved the SNC problem using combinatorial optimisation approaches, 

aimed at finding optimal SNC(s) based on the desired SN entity attributes. The primary limitation of those 

optimisation techniques is not incorporating individual (i.e. SN entity-level) decision-making which is essential 

to practitioners in terms of ensuring the relevance of any models developed. It is widely recognised that attributes, 

goals and strategies of SN entities, as well as the attributes of product-market profiles, continue to change, in 

dynamic business environments. This means the decisions of SN entities should be responsive to shifting product-

market profiles and take into account the changing organisational and environmental conditions. In response to 

the above practical needs, the novelty of the proposed approach in this study comes from its capacity to account 

for the product-market profile, and the variability and disparities between individual entities, and have a 

comprehensive representation of SN characteristics, by the diligent selection and application of ‘state-of-the-art’ 

knowledge and technology.  

In addressing the first research question, this study made a valuable contribution to theory, particularly by 

synthesising the state-of-the-art information on the topic of SNC modelling and then identifying the key factors 

that drive SNC decisions. In addition to this primary contribution, a number of theoretical insights were also drawn 

through the suite of experiments conducted as part of the study. These insights include: a deeper understanding of 

the relationships among SN entity level decisions, contextual factors and SN-level performance; a deeper 

appreciation of the role and significance of the input parameters used in modelling SNC decisions, thus being able 

to address the current limitations such as lack of information sharing between SC partners; and a range of other 

benefits that can be derived from the application of MASs, including how to optimise SNC decisions in 

environments where there is limited historical data available to be used. 

In terms of contribution to practice, the proposed comprehensive approach allows for aligning relevant product-

market profile attributes with the expected SN-level performance metrics by way of incorporating that requirement 

in selecting potential SN entities. Furthermore, while accounting for structural, temporal, and spatial dimensions 

in modelling SNCs to better reflect the real-world SN contexts, the proposed comprehensive approach 
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demonstrated the relationship between SN entity-level decisions, changing SN conditions and  SN-level 

performance. As such, the use of this model will help increase the understanding of SN dynamics at a fundamental 

level and help assess alternative scenarios by determining the sensitivity of model outcomes to certain parameters 

that represent the features of real-world SNs.  

Potentially, this model can be used to enhance SNC decisions by any SN entity, as well as other parties such as 

SC analysts or consultants. The primary purpose of the proposed MAOM is to support SC managers with the 

necessary analytical support (insights) needed to holistically deal with multiple decisions (e.g., determining the 

most appropriate sourcing options and delivery lead times) which are capable of generating alternative optimal 

SNCs for a given product-market profile, including the attributes of volume, delivery lead-time, and WTP price. 

In addition to the above primary use, the proposed MAOM can be used as a tool to analyse the capacity of existing 

SN entities. For example, certain SN entities are capable of contributing to multiple product-market profiles, 

whereas other SN entities may not have that capability, depending on the state of their infrastructure, operations 

cost and operations time. Apart from identifying the competitiveness of SN entities as above, the proposed MAOM 

can be used to perform sensitivity analysis and thereby, estimate the extent to which the SN-level performance is 

vulnerable to changes in the attributes of SN entities collectively in each stage(s) or individually as entities of the 

SN. This enables risk mitigation strategies to be adopted as discussed in Section 6.2 and to be competitive in the 

business context.  

Additionally, the proposed MAOM can be used to test the robustness of the SNC(s) generated under the initial 

baseline conditions by analysing a number of scenarios (i.e., possible future situations). Depending on the outcome 

of the scenario analysis, favourable (i.e., instances which make a low impact on SN performance) or unfavourable 

(i.e., instances which make a high impact on SN performance) SN contexts can be identified, which then could 

lead to appropriate managerial responses. In favourable scenarios, opportunities created to initiate and maintain 

suitable relationships with preferred SN entities, whereas, in unfavourable scenarios, mitigating actions can be 

taken such as identifying new SN entities to cope with such situations or negotiating with existing SN entities to 

deal with the new situations. Similarly, depending on the case at hand, a decision-maker can determine whether a 

simple strategy is adequate to address the problem or more specific strategies are required. 

Furthermore, the proposed MAOM can be used to support SN design decisions such as capacity planning of 

existing facilities, identifying potential locations for new facilities and introducing new technologies to overcome 
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inefficiencies in the current system.  In this regard, the capacity of the proposed model to evaluate alternative 

SNCs can be invaluable. Moreover, the proposed MAOM can be used in designing a SN for the first time, for 

example, when introducing a new product, the extent to which existing SN can be used or decisions made such as 

prefered SN entity locations and their other attributes, including capacity, lead time and operations cost.  

Compared to the existing models, the proposed MAOM effectively helps decision-making to be responsive, robust 

and resilient in the face of changing SN conditions, which is a significant contribution to practice.  Accordingly,  

there is a distinct advantage in applying this type of decision support tool to enhance SNC decision-making. 

 Limitations and future research directions 

This study addressed a number of significant research gaps identified through the review of extant SNC literature. 

As outlined in Section 7.4, there are noteworthy contributions to knowledge. However, a number of limitations of 

this study are also acknowledged. Addressing these limitations and accommodating certain other extensions could 

be considered in future studies.  

A few limitations of this study can be considered in relation to modelling the behaviour of SN entities, 

implementing structural characteristics of SNs, as well as SN conditions and accounting for the constraints 

associated with SNC decisions. Some of those limitations are underpinned by the assumptions used in simulation 

modelling; i.e., assuming the same profit ranges and capacity levels for all SN entities; not incorporating some 

current practices such as outsourcing and overtime work; not splitting the customer demand between SN entities; 

and not testing the proposed model on multiple products or BOM. Many of these limitations can be addressed 

with minimal additional effort in future studies.  

A major limitation of this study is that the proposed model was not validated using empirical data directly drawn 

from the industry, nor was it implemented in an industrial setting. Although adequate measures were taken to test 

the veracity of the model through other means such as sensitivity analysis and scenario analysis, it would be 

worthwhile to implement the model in the context of a real-world SN to more comprehensively test its efficacy. 

Further opportunities exist for extending and expanding this research to investigate the merits or otherwise of 

alternative modelling approaches and algorithms such as Real options/Game Theory (Trigeorgis &  Tsekrekos 

2018), Dynamic Metaheuristics (Yang, Jiang & Nguyen 2012) and improved Bayesian frameworks (Imani, 

Ghoreishi & Braga-Neto 2018) against those used in the proposed model. 
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Additionally, this study did not account for supplier switching costs in the proposed MAOM. In the context of 

strategic supply management, supplier switching is the phenomenon of a buyer choosing a new supplier to replace 

an existing supplier, with full or partial allocation of orders to the new supplier (Wagner & Friedl 2007; Burnham, 

Frels & Mahajan 2003). The primary motivations for supplier switching are the need for reducing costs and 

improving on other aspects of performance such as quality, delivery, flexibility or service (Uluskan,  Godfrey & 

Joines 2017; Gosling, Purvis & Naim 2010). However, the literature also cites other reasons such as breakdown 

of relationships with existing suppliers, renewal of the existing supplier base and changes in the technologies, 

product architecture or materials used in relation to the product(s) concerned (Yen, Wang & Horng 2011; Lin, Lo 

& Sung 2006). These factors may still be directly or indirectly related to the primary reasons referred to above in 

that they would serve as underlying factors, given that the ultimate goal of an organisation is to sustain its success 

against a set of performance metrics.  

The costs associated with switching suppliers are considered to be multi-dimensional, and may include those 

related to supplier evaluation and selection, building relationships with the new supplier and other investments 

required for accommodating a new supplier such as updating coordination, communication or transaction 

protocols and training of employees (Burnham, Frels & Mahajan 2003; Fornell 1992). Even though switching 

costs incur only once when the suppliers are changed, the literature suggests that these costs could be substantial 

given the opportunity costs involved, potential entry barriers they could create, and more broadly, the strategic 

significance of effective long-term relationships with suppliers (Yen, Wang & Horng 2011; Yi & He 2011). 

Additionally, switching costs may vary from organisation to organisation depending on the industry sector 

concerned and the stage of the SN they are part of, as well as the bargaining power that could be exercised by the 

buyer organisation (Uluskan, Godfrey & Joines 2017; Zhang, Tang & Hu 2015). Given their multidimensional 

and situational nature, capturing and quantifying switching costs can be quite challenging. In SN modelling 

literature, switching costs have been accounted for in terms of the difference between the savings achieved through 

switching and the fixed costs incurred in switching (Burnham, Frels & Mahajan 2003). The amount saved depends 

on the quantity purchased, unit price difference and benefits gained through distinct competitive strategies 

(Uluskan, Godfrey & Joines 2017). According to the classification of Burnham, Frels and Mahajan  (2003), the 

fixed switching costs are expressed as a function of procedural switching costs, financial switching costs and 

relational switching costs. Procedural switching costs (the cost of time and effort) consist of economic risk, 

evaluation, learning, and setup costs. Financial switching costs include the loss of financially quantifiable 
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resources such as benefit loss costs and monetary loss costs. Relational switching costs, involving psychological 

or emotional discomfort due to the loss of identity and the breaking of bonds such as personal relationship loss 

costs, brand relationship loss costs.  

Having considered the significance of switching costs, as reported in SCM literature and the way they have been 

dealt with in SC modelling literature, this study chose not to incorporate switching costs explicitly into the 

proposed MAOM model. The reasoning behind this choice is briefly outlined below. First, in the context of this 

study, supplier switching occurs when the existing supply network configuration is no longer able to cater to the 

current market needs in term of responding to the changes in the product-market profile or delivering on the 

relevant competitive priorities. As such, the two options available to be considered are investing into the 

development of existing suppliers so that they could satisfy the expected performance levels or incurring the fixed 

costs associated with engaging a new supplier that is capable of meeting the desired performance levels. Given 

the difficulties associated with capturing all cost components associated with these two options at the level of 

detail and accuracy required to compute the net effect, it was assumed that the difference between the two options 

is minimal. Any differentials in production costs achieved by supplier switching are implicitly dealt with and 

evaluated through the bidding process. Nonetheless, there are two further opportunities to address the aspect of 

switching costs in future studies. In cases where empirical data is available on the components of switching costs, 

the proposed MAOM could be amended to incorporate switching costs as appropriate. Alternatively, switching 

costs could be considered in a more subjective and/or case-by-case basis as part of selecting the scenario-based 

Pareto-optimal SNCs.          

The lack of information sharing across the SN remains a fundamental problem in relation to optimising SN-level 

performance, and the proposed MAOM has been developed to deal with this situation.  In order to configure a SN 

holistically, there are a number of SNC decisions that need to be addressed. Such decisions include determining 

the location and capacity of the various SN facilities concerned, selection of suitable transport modes and the 

deployment of technologies across the SN. To make well-informed SNC decisions with respect to each of  these 

aspects, the decision-maker will need to access relevant information such as the product-market profile of target 

markets, location-specific details, capacity levels of facilities, processing costs, processing times and the 

capabilities of individual SN entities involved. The role and impact of information in the context of SNC decisions 

can be considered from two key perspectives. First, the situation where there is incomplete information or 

imprecise information. This situation gives rise to poor SNC decisions at the individual entity level in terms of 
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identifying and supporting relevant competitive priorities, which will in turn, result in poor SN-level performance, 

as well. Researchers have attempted to address this limitation through approaches involving some form of 

stochastic or fuzzy models. The second situation is where the required information may be available at the 

individual entity level, but not widely shared across the SN. Often, organisations are reluctant to share 

commercially sensitive information with those other than their immediate upstream and downstream SN partners. 

In such situations, even though the individual SN entities may be in a position to make effective decisions in 

relation to achieving their own goals, the resultant SN-level performance may still be sub-optimal. Numerous 

attempts have been made by researchers to address this issue through process integration, deployment of 

information and communication technologies and other broad-based initiatives such as collaborative planning, 

forecasting and replenishment. Despite these efforts, the lack of information sharing across the SN remains a 

fundamental problem in relation to optimising SN-level performance. As explained in Section 4.3.1 of this thesis, 

the proposed MAOM was designed to address this issue through a rather unique way. That is, the bidding strategy 

used in the MAOM allows the globally optimal SNs to be generated without having to share commercially 

sensitive information among all entities across the supply chain. The only information required to be released by 

the entities participating in the bidding process is the bidding price and promised lead time, which is consistent 

with the common industry practice. The other types of information required to run the model, such as the product 

architecture, product-market profile and transportation costs can all be derived from industry-based data or 

publicly available information. However, in cases where empirical data representing these parameters are readily 

available and can be shared across the SN, then it will only make the global optimisation effort more convenient 

and the outcomes of that process more refined and realistic. There are two key ways in which the information can 

be utilised. For example, information regarding product-market profile, processing times and 

processing/transportation costs can be used as direct inputs to the proposed MAOM (rather than having to derive 

those using other sources). Second, any additional data related to energy consumption, carbon footprint or socially 

responsible practices can be considered when evaluating the alternative Pareto-optimal SNCs. 

Depending on the generic competitive strategy pursued, an organisation may choose to focus on excelling at 

certain aspects of its operations over the other aspects, in terms of out-performing their competitors. Accordingly, 

the attributes that the customers are looking for in their final purchasing decision become order-winning attributes 

while the other attributes that allow a product to go into a customer’s shortlist are considered to be order-qualifying 

attributes. This means, even though the customers’ final purchasing decision is driven by the order-winning 



154 

 

attributes of a product or service offering, they also expect that product or service to perform at a threshold (i.e., 

an acceptable) level against order-qualifying attributes. To illustrate the efficacy of the proposed MAOM,  

operations costs and processing times at the SN entity level have been treated as order-winning attributes of the 

product, considering their relevance to the product-market profile concerned in term of supporting the individual 

SN entity-level goals. The other attributes such as quality, delivery, flexibility and service, are assumed to be at 

an acceptable level for all eligible SN entities. From a practical procurement perspective, this situation could be 

analogous to soliciting bids using a preferred supplier base.  

Accordingly, in future studies, a number of extensions can be implemented with minimal modifications to the 

existing model. As presented in Figure 3.1, the three key steps of this proposed comprehensive approach can be 

implemented in alternative ways using state-of-the-art technology. In this study, customer requirements were 

captured in terms of three attributes using AHP method and using other approximations, however, in future 

studies, product-market profiles can be generated using demographic and historical data using data mining 

algorithms. Furthermore, in future studies, the proposed MAOM can be implemented on a cloud-based platform, 

using advanced technologies (e.g., Industry 4.0 and Logistics 4.0) and used in an industrial context. This can be 

further supported by more advanced machine learning tools to help with the decisions of individual SN entities. 

Accommodating the above alternative methods supported by the latest technologies could deliver a data-driven 

IoT-based decision support tool. 
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APPENDIX 1: ESTIMATING PRODUCT-MARKET PROFILE 

ATTRIBUTES 

Steps involve in AHP problem-solving approach to estimate the volume attribute 

Step 1: Identify the goal, criteria, sub-criteria and alternatives 

Goal: The goal of this problem is to estimate volume attribute of the product-market profile.  

Criteria: per captia income, energy consumption and price level index 

Alternatives: 10 demand regions (Manchester, Zaragoza, Milan, Munich, Hannover, Nuremberg, 

Oslo, Palermo, Paris, Prague) 

Step 2: Find the rating between each criterion based on subjective opinion using Table A1.1 to construct the matrix 

estimating the relative importance of each criterion.  

Table A1.1: Rating for each subjective judgment of preference 

 

 

 

 

 

Step 3: Conduct pairwise comparison between each criterion based on the value derived from subjective opinion.  

The square matrix (see Table A1.2) is constructed comparing the rating of the criterion in row and column, 

respectively. It is calculated by dividing the row value by the column value.  The elements in the diagonal of the 

matrix become one, and the elements in the lower triangle of the matrix are derived, taking the reciprocal of upper 

triangle elements. The weight of each criterion is defined as wi, which is determined to derive the normalized 

Subjective judgment of preference Numerical rating 

Extremely preferred 9 

Very strong to extremely preferred 8 

Very strongly preferred 7 

Strongly preferred 6 

Moderate to strongly preferred 5 

Moderately preferred 3 

Equally to moderately preferred 2 

Equally preferred 1 
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eigenvector (see Table A1.2 to A1.5) which is then checked for consistency. The elements in the normalized 

eigenvector is relevant weights of each criterion.  

Table A1.2: Relative importance of each criterion 

 Per capita 

income($)-

country based 

Energy 

consumption(per 

capita) kwh 

PLI (Price level indices)for 

household appliances 

Per capita income($)-country 

based 
1.00 6.00 8.00 

Energy consumption(per capita) 

kwh 
0.17 1.00 5.00 

PLI(Price level indices)for 

household appliances 
0.13 0.20 1.00 

 

Table A1.3: Step 1 of deriving the normalized eigenvector for criteria 

 Per capita 

income($)-

country based 

Energy 

consumption(per 

capita) kwh 

PLI(Price level indices)for 

household appliances 

Per capita income($)-country 

based 
1.00 6.00 8.00 

Energy consumption(per capita) 

kwh 0.17 1.00 5.00 

PLI(Price level indices)for 

household appliances 0.13 0.20 1.00 

 1.29 7.20 14.00 
 

Table A1.4: Step 2 of deriving the normalized eigenvector 
 

 Per capita 

income($)-

country based 

Energy 

consumption(per 

capita) kwh 

PLI(Price level 

indices)for household 

appliances 

Per capita income($)-country 

based 
0.77 0.83 0.57 

Energy consumption(per capita) 

kwh 
0.13 0.14 0.36 

PLI(Price level indices)for 

household appliances 
0.10 0.03 0.07 

 

Table A1.5: Step 3 of deriving the normalized eigenvector 

 

 Per capita 

income($)-

country based 

Energy 

consumption(per 

capita) kwh 

PLI(Price level 

indices)for household 

appliances Total 

Per capita income($)-country 

based 
0.77 0.83 0.57 2.18 

Energy consumption(per capita) 

kwh 0.13 0.14 0.36 0.63 

PLI(Price level indices)for 

household appliances 
0.10 0.03 0.07 0.20 
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Step 4: Collect statistical data to construct the matrix for each criterion with respect to each alternative (i.e., 

consumer region).   

Table A1.6: Statistical value of each criterion with respect to each alternative 

 

 

 

 

Step 5: Conduct pairwise comparison between alternatives (i.e., regions) for each criterion. 

The square matrix is constructed comparing the value of the alternative of each criterion in row and column, 

respectively. It is calculated by dividing the row value and the column value.  The elements in the diagonal of the 

matrix become one, and the elements in the lower triangle of the matrix are derived, taking the reciprocal of upper 

triangle elements.  For the given criterion i, compare k number of alternatives and construct the square matrix and 

then find normalized eigenvector. The elements in the normalized eigenvector is relevant weights of each 

alternative (wik) of a given criterion.  

 

 

l 
Consumer 

region 
Population 

Per 

capita 

income 

Energy 

consumption 

(per capita) 

Price 

level 

index 

(PLI) 

1 Zaragoza 674317 30278 5573 95 

2 Milan 1251000 35823 5398 102 

3 Munich 1388000 47590 7270 98 

4 Hannover 532163 47590 7270 98 

5 Nuremberg 509005 47590 7270 98 

6 Paris 2244000  44538 7344 103 

7 Prague 1247000  19563 6305 80 

Table A1.7:  Relative importance of percapita income with respect to each 

alternative 

  C1 C2 C3 C4 C5 C6 C7 

  45,653 30,278 35,823 47,590 47,590 47,590 97,013 

C1 30,278 1.0 0.8 0.6 0.6 0.6 0.7 1.5 

C2 35,823 1.2 1.0 0.8 0.8 0.8 0.8 1.8 

C3 47,590 1.6 1.3 1.0 1.0 1.0 1.1 2.4 

C4 47,590 1.6 1.3 1.0 1.0 1.0 1.1 2.4 

C5 47,590 1.6 1.3 1.0 1.0 1.0 1.1 2.4 

C6 44,538 1.5 1.2 0.9 0.9 0.9 1.0 2.3 

C7 19,563 0.6 0.5 0.4 0.4 0.4 0.4 1.0 

 

 

Table A1.7:  Relative importance of percapita income with respect to each 

alternative 

  C1 C2 C3 C4 C5 C6 C7 

  45,653 30,278 35,823 47,590 47,590 47,590 97,013 

C1 30,278 1.0 0.8 0.6 0.6 0.6 0.7 1.5 

C2 35,823 1.2 1.0 0.8 0.8 0.8 0.8 1.8 

C3 47,590 1.6 1.3 1.0 1.0 1.0 1.1 2.4 

C4 47,590 1.6 1.3 1.0 1.0 1.0 1.1 2.4 

C5 47,590 1.6 1.3 1.0 1.0 1.0 1.1 2.4 
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Table A1.8: Step 1 of deriving the normalized eigenvector for each 

alternative 

  C1 C2 C3 C4 C5 C6 C7 

  45,653 30,278 35,823 47,590 47,590 47,590 97,013 

C1 30,278 1.0 0.8 0.6 0.6 0.6 0.7 1.5 

C2 35,823 1.2 1.0 0.8 0.8 0.8 0.8 1.8 

C3 47,590 1.6 1.3 1.0 1.0 1.0 1.1 2.4 

C4 47,590 1.6 1.3 1.0 1.0 1.0 1.1 2.4 

C5 47,590 1.6 1.3 1.0 1.0 1.0 1.1 2.4 

C6 44,538 1.5 1.2 0.9 0.9 0.9 1.0 2.3 

C7 19,563 0.6 0.5 0.4 0.4 0.4 0.4 1.0 

  14.9 12.6 9.5 9.5 9.5 10.1 23.1 

 

 

Table A1.8: Step 1 of deriving the normalized eigenvector for each 

alternative 

  C1 C2 C3 C4 C5 C6 C7 

  45,653 30,278 35,823 47,590 47,590 47,590 97,013 

C1 30,278 1.0 0.8 0.6 0.6 0.6 0.7 1.5 

C2 35,823 1.2 1.0 0.8 0.8 0.8 0.8 1.8 

C3 47,590 1.6 1.3 1.0 1.0 1.0 1.1 2.4 

C4 47,590 1.6 1.3 1.0 1.0 1.0 1.1 2.4 

C5 47,590 1.6 1.3 1.0 1.0 1.0 1.1 2.4 

C6 44,538 1.5 1.2 0.9 0.9 0.9 1.0 2.3 

C7 19,563 0.6 0.5 0.4 0.4 0.4 0.4 1.0 

  14.9 12.6 9.5 9.5 9.5 10.1 23.1 

 

Table A1.10:  Relative importance of energy consumption with respect to 

each alternative 

  C1 C2 C3 C4 C5 C6 C7 

  5573 5398 7270 7270 7270 7344 6305 

C1 5573 1.0 1.0 0.8 0.8 0.8 0.8 0.9 

C2 5398 1.0 1.0 0.7 0.7 0.7 0.7 0.9 

C3 7270 1.3 1.3 1.0 1.0 1.0 1.0 1.2 

C4 7270 1.3 1.3 1.0 1.0 1.0 1.0 1.2 

C5 7270 8.5 8.8 6.5 6.5 6.5 6.5 7.5 

C6 7344 1.3 1.4 1.0 1.0 1.0 1.0 1.2 

C7 6305 1.1 1.2 0.9 0.9 0.9 0.9 1.0 

 

 

Table A1.10:  Relative importance of energy consumption with respect to 

each alternative 

  C1 C2 C3 C4 C5 C6 C7 

  5573 5398 7270 7270 7270 7344 6305 

C1 5573 1.0 1.0 0.8 0.8 0.8 0.8 0.9 

C2 5398 1.0 1.0 0.7 0.7 0.7 0.7 0.9 

C3 7270 1.3 1.3 1.0 1.0 1.0 1.0 1.2 

C4 7270 1.3 1.3 1.0 1.0 1.0 1.0 1.2 

C5 7270 8.5 8.8 6.5 6.5 6.5 6.5 7.5 

C6 7344 1.3 1.4 1.0 1.0 1.0 1.0 1.2 

C7 6305 1.1 1.2 0.9 0.9 0.9 0.9 1.0 

 

Table A1.11: Step 1 of deriving the normalized eigenvector for each 

alternative 

  C1 C2 C3 C4 C5 C6 C7 

  5573 5398 7270 7270 7270 7344 6305 

C1 5573 1.0 1.0 0.8 0.8 0.8 0.8 0.9 

C2 5398 1.0 1.0 0.7 0.7 0.7 0.7 0.9 

C3 7270 1.3 1.3 1.0 1.0 1.0 1.0 1.2 

C4 7270 1.3 1.3 1.0 1.0 1.0 1.0 1.2 

C5 7270 8.5 8.8 6.5 6.5 6.5 6.5 7.5 

C6 7344 1.3 1.4 1.0 1.0 1.0 1.0 1.2 

C7 6305 1.1 1.2 0.9 0.9 0.9 0.9 1.0 

  21.8 22.5 16.7 16.7 16.7 16.5 19.2 

 

 

Table A1.11: Step 1 of deriving the normalized eigenvector for each 

alternative 

  C1 C2 C3 C4 C5 C6 C7 

  5573 5398 7270 7270 7270 7344 6305 

C1 5573 1.0 1.0 0.8 0.8 0.8 0.8 0.9 

C2 5398 1.0 1.0 0.7 0.7 0.7 0.7 0.9 

C3 7270 1.3 1.3 1.0 1.0 1.0 1.0 1.2 

C4 7270 1.3 1.3 1.0 1.0 1.0 1.0 1.2 

C5 7270 8.5 8.8 6.5 6.5 6.5 6.5 7.5 

C6 7344 1.3 1.4 1.0 1.0 1.0 1.0 1.2 

C7 6305 1.1 1.2 0.9 0.9 0.9 0.9 1.0 

  21.8 22.5 16.7 16.7 16.7 16.5 19.2 
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Table A1.12: Step 2 of deriving the normalized eigenvector for each 

alternative 

  C1 C2 C3 C4 C5 C6 C7  

  5573 5398 7270 7270 7270 7344 6305  

C1 5573 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.48 

C2 5398 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.47 

C3 7270 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.63 

C4 7270 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.63 

C5 7270 0.4 0.4 0.4 0.4 0.4 0.4 0.4 3.62 

C6 7344 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.64 

C7 6305 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.55 

 

 

Table A1.12: Step 2 of deriving the normalized eigenvector for each 

alternative 

  C1 C2 C3 C4 C5 C6 C7  

  5573 5398 7270 7270 7270 7344 6305  

C1 5573 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.48 

C2 5398 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.47 

C3 7270 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.63 

C4 7270 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.63 

C5 7270 0.4 0.4 0.4 0.4 0.4 0.4 0.4 3.62 

C6 7344 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.64 

C7 6305 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.55 

 

Table A1.13:  Relative importance of PLI with respect to each alternative 

  C1 C2 C3 C4 C5 C6 C7 

  95 102 98 98 98 103 80 

C1 95 1.0 1.0 0.8 0.8 0.8 0.8 0.9 

C2 102 1.0 1.0 0.7 0.7 0.7 0.7 0.9 

C3 98 1.3 1.3 1.0 1.0 1.0 1.0 1.2 

C4 98 1.3 1.3 1.0 1.0 1.0 1.0 1.2 

C5 98 8.5 8.8 6.5 6.5 6.5 6.5 7.5 

C6 103 1.3 1.4 1.0 1.0 1.0 1.0 1.2 

C7 80 1.1 1.2 0.9 0.9 0.9 0.9 1.0 

 

 

Table A1.13:  Relative importance of PLI with respect to each alternative 

  C1 C2 C3 C4 C5 C6 C7 

  95 102 98 98 98 103 80 

C1 95 1.0 1.0 0.8 0.8 0.8 0.8 0.9 

C2 102 1.0 1.0 0.7 0.7 0.7 0.7 0.9 

C3 98 1.3 1.3 1.0 1.0 1.0 1.0 1.2 

C4 98 1.3 1.3 1.0 1.0 1.0 1.0 1.2 

C5 98 8.5 8.8 6.5 6.5 6.5 6.5 7.5 

C6 103 1.3 1.4 1.0 1.0 1.0 1.0 1.2 

C7 80 1.1 1.2 0.9 0.9 0.9 0.9 1.0 

 

Table A1.14: Step 1 of deriving the normalized eigenvector for each alternative 

  C1 C2 C3 C4 C5 C6 C7 

  95 102 98 98 98 103 80 

C1 95 1.0 0.9 1.0 1.0 1.0 0.9 1.2 

C2 102 1.1 1.0 1.0 1.0 1.0 1.0 1.3 

C3 98 1.0 1.0 1.0 1.0 1.0 1.0 1.2 

C4 98 1.0 1.0 1.0 1.0 1.0 1.0 1.2 

C5 98 1.0 1.0 1.0 1.0 1.0 1.0 1.2 

C6 103 1.1 1.0 1.1 1.1 1.1 1.0 1.3 

C7 80 0.8 0.8 0.8 0.8 0.8 0.8 1.0 

  10.7 10.0 10.4 10.4 10.4 9.9 12.7 

 

 

Table A1.14: Step 1 of deriving the normalized eigenvector for each alternative 

  C1 C2 C3 C4 C5 C6 C7 

  95 102 98 98 98 103 80 

C1 95 1.0 0.9 1.0 1.0 1.0 0.9 1.2 

C2 102 1.1 1.0 1.0 1.0 1.0 1.0 1.3 

C3 98 1.0 1.0 1.0 1.0 1.0 1.0 1.2 

C4 98 1.0 1.0 1.0 1.0 1.0 1.0 1.2 

C5 98 1.0 1.0 1.0 1.0 1.0 1.0 1.2 

C6 103 1.1 1.0 1.1 1.1 1.1 1.0 1.3 

C7 80 0.8 0.8 0.8 0.8 0.8 0.8 1.0 

  10.7 10.0 10.4 10.4 10.4 9.9 12.7 

 

Table A1.15: Step 2 of deriving the normalized eigenvector for each alternative 

  C1 C2 C3 C4 C5 C6 C7  

  95 102 98 98 98 103 80  

C1 95 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.94 

C2 102 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.00 

C3 98 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.97 

C4 98 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.97 

C5 98 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.97 

C6 103 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.01 

C7 80 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.79 

 

 

Table A1.15: Step 2 of deriving the normalized eigenvector for each alternative 

  C1 C2 C3 C4 C5 C6 C7  

  95 102 98 98 98 103 80  

C1 95 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.94 

C2 102 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.00 

C3 98 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.97 
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Step 5: Calculate the rating for each alternative. 

The derived weights (wik) for each alternative for each criteria is multiplied by the weight of the respective 

criteria wi and aggregate it to get the total weight. The total weight of the alternative k,  Wk; Wk = w1kw1 + 

w2kw2 + … + wIkwI  

Table A1.16:  Relative importance of population with respect to each alternative 

  C1 C2 C3 C4 C5 C6 C7 

  674317 1251000 1388000 532163 509005 2244000 1247000 

C1 674317 1.0 0.5 0.5 1.3 1.3 0.3 0.5 

C2 1251000 1.9 1.0 0.9 2.4 2.5 0.6 1.0 

C3 1388000 2.1 1.1 1.0 2.6 2.7 0.6 1.1 

C4 532163 0.8 0.4 0.4 1.0 1.0 0.2 0.4 

C5 509005 0.8 0.4 0.4 1.0 1.0 0.2 0.4 

C6 2244000 3.3 1.8 1.6 4.2 4.4 1.0 1.8 

C7 1247000 1.8 1.0 0.9 2.3 2.4 0.6 1.0 

 

 

Table A1.16:  Relative importance of population with respect to each alternative 

  C1 C2 C3 C4 C5 C6 C7 

  674317 1251000 1388000 532163 509005 2244000 1247000 

C1 674317 1.0 0.5 0.5 1.3 1.3 0.3 0.5 

C2 1251000 1.9 1.0 0.9 2.4 2.5 0.6 1.0 

C3 1388000 2.1 1.1 1.0 2.6 2.7 0.6 1.1 

C4 532163 0.8 0.4 0.4 1.0 1.0 0.2 0.4 

C5 509005 0.8 0.4 0.4 1.0 1.0 0.2 0.4 

C6 2244000 3.3 1.8 1.6 4.2 4.4 1.0 1.8 

C7 1247000 1.8 1.0 0.9 2.3 2.4 0.6 1.0 

 

Table A1.17: Step 1 of deriving the normalized eigenvector for each alternative 

  C1 C2 C3 C4 C5 C6 C7 

  674317 1251000 1388000 532163 509005 2244000 1247000 

C1 674317 1.0 0.5 0.5 1.3 1.3 0.3 0.5 

C2 1251000 1.9 1.0 0.9 2.4 2.5 0.6 1.0 

C3 1388000 2.1 1.1 1.0 2.6 2.7 0.6 1.1 

C4 532163 0.8 0.4 0.4 1.0 1.0 0.2 0.4 

C5 509005 0.8 0.4 0.4 1.0 1.0 0.2 0.4 

C6 2244000 3.3 1.8 1.6 4.2 4.4 1.0 1.8 

C7 1247000 1.8 1.0 0.9 2.3 2.4 0.6 1.0 

  14.3 7.7 6.9 18.1 18.9 4.3 7.7 

 

 

Table A1.17: Step 1 of deriving the normalized eigenvector for each alternative 

  C1 C2 C3 C4 C5 C6 C7 

  674317 1251000 1388000 532163 509005 2244000 1247000 

C1 674317 1.0 0.5 0.5 1.3 1.3 0.3 0.5 

C2 1251000 1.9 1.0 0.9 2.4 2.5 0.6 1.0 

C3 1388000 2.1 1.1 1.0 2.6 2.7 0.6 1.1 

C4 532163 0.8 0.4 0.4 1.0 1.0 0.2 0.4 

C5 509005 0.8 0.4 0.4 1.0 1.0 0.2 0.4 

C6 2244000 3.3 1.8 1.6 4.2 4.4 1.0 1.8 

C7 1247000 1.8 1.0 0.9 2.3 2.4 0.6 1.0 

  14.3 7.7 6.9 18.1 18.9 4.3 7.7 

 

Table A1.18: Step 2 of deriving the normalized eigenvector for each alternative 

  C1 C2 C3 C4 C5 C6 C7  

  674317 1251000 1388000 532163 509005 2244000 1247000  

C1 674317 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.70 

C2 1251000 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.30 

C3 1388000 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.44 

C4 532163 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.55 

C5 509005 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.53 

C6 2244000 0.2 0.2 0.2 0.2 0.2 0.2 0.2 2.33 

C7 1247000 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.29 

 

 

Table A1.18: Step 2 of deriving the normalized eigenvector for each alternative 

  C1 C2 C3 C4 C5 C6 C7  

  674317 1251000 1388000 532163 509005 2244000 1247000  

C1 674317 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.70 

C2 1251000 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.30 

C3 1388000 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.44 

C4 532163 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.55 

C5 509005 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.53 

C6 2244000 0.2 0.2 0.2 0.2 0.2 0.2 0.2 2.33 

C7 1247000 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.29 
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Table A1.19: Normalised eigenvector for each criterion 

 

Table A1.20: The derived weight for each alternative 

 

 

 

 

 

l City Per capita 

income($)-

country based 

Energy 

consumption 

(per capita) kwh 

PLI(Price level 

indices) for 

household appliances 

Population 

1 Zaragoza 0.67 0.48 0.94 0.70 

2 Milan 0.79 0.47 1.00 1.30 

3 Munich 1.05 0.63 0.97 1.44 

4 Hannover 1.05 0.63 0.97 0.55 

5 Nuremberg 1.05 3.62 0.97 0.53 

6 Paris 0.99 0.64 1.01 2.33 

7 Prague 0.43 0.55 0.79 1.29 

l City Per capita 

income($)-

country based 

Energy 

consumption 

(per capita) kwh 

PLI(Price level 

indices) for 

household appliances 

Population  

  0.42 0.23 0.79 2.55  

1 Zaragoza 0.67 0.48 0.94 0.70 1.44 

2 Milan 0.79 0.47 1.00 1.30 2.96 

3 Munich 1.05 0.63 0.97 1.44 3.50 

4 Hannover 1.05 0.63 0.97 0.55 1.23 

5 Nuremberg 1.05 3.62 0.97 0.53 1.88 

6 Paris 0.99 0.64 1.01 2.33 5.70 

7 Prague 0.43 0.55 0.79 1.29 2.99 
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APPENDIX 2: REFRIGERATOR SUPPLY NETWORK 

Table A2.1: Parameter values of refrigerator components 

No Component Material Weight (g) Price (yen) Mfg. cost (yen) Mfg. energy (kWh) 

1 Cabinet frame Fe 23606 18000 5313 72.9 

2 Cabinet Plastic 29313 78800 24313 147.7 

3 Cabinet pipe Cu 326 2000 558 1.0 

4 Duct Plastic 1028 4000 1265 5.2 

5 Fan motor Fe 483 2600 851 1.5 

6 Evaporator case Plastic 897 6000 1940 4.5 

7 Accumulator Fe 177 1400 461 0.6 

8 Evaporator Al 532 5000 1401 1.6 

9 Back grill Fe 986 2700 867 3.0 

10 Compressor Fe 7985 8000 2401 24.7 

11 sideboard Fe 980 4200 1367 3.0 

12 radiator Fe 2669 4000 1244 8.2 

13 duct Plastic 633 1700 525 3.2 

14 Base Fe 1240 2600 825 3.8 

15 Door1 Fe 2693 6000 1910 8.3 

16 Door2 Fe 669 2000 644 2.1 

17 Door3 Fe 1838 2500 772 5.6 

18 Door4 Fe 1834 2500 772 5.6 

19 Gasket Plastic 100 1500 493 0.5 

20 Door plastic Plastic 6709 15500 4719 33.8 

21 SPCB Plastic 3113 14700 4693 15.7 

22 MPCB Fe 1564 18500 6115 1.1 

23 Heater Al 112 4200 1344 0.35 

24 Tank Plastic 1412 10300 3339 4.4 

25 Dryer Cu 111 1300 396 0.3 

Source:  Umeda et al. (2000) 

 

 

Table A2.1: Parameter values of refrigerator components 

No Component Material Weight 

(g) 

Price (yen) Mfg. cost 

(yen) 

Mfg. 

energy 

(kWh) 

1 Cabinet 

frame 

Fe 23606 18000 5313 72.9 

2 Cabinet Plastic 29313 78800 24313 147.7 

3 Cabinet pipe Cu 326 2000 558 1.0 

4 Duct Plastic 1028 4000 1265 5.2 

5 Fan motor Fe 483 2600 851 1.5 

6 Evaporator 

case 

Plastic 897 6000 1940 4.5 

7 Accumulator Fe 177 1400 461 0.6 

8 Evaporator Al 532 5000 1401 1.6 

9 Back grill Fe 986 2700 867 3.0 

10 Compressor Fe 7985 8000 2401 24.7 

11 sideboard Fe 980 4200 1367 3.0 

Figure A2.1: Physical appearance of components 

manufacture in 1st tier supply stage 
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Table A2.2: Operations cost of each node of refrigerator SN 

Tier 2 supply 

stage node 
Tier 1 supply stage node 

Manufacturing 

SN node 

Distribution SN 

node 

Type 

OP 

cost 

($) 

Type 
OP  cost ($) 

Type 

OP  

cost 

($) 

Type 

OP  

cost 

($) Individual Total 

Fe 49 Cabinet frame 53.13  Product 10 Storing 5 

Plastic 88 Door1 19.1  assembly   and   

Cu 5 Door2 6.44      dispatching   

Al 15 Door3 7.72          

    Door4 7.72          

    Base 8.25          

    Sideboard 13.67          

    Back grill  8.67          

    mpcb 61.15          

        185.85         

    Compressor 24.01          

    Radiator  12.44          

    fan motor 8.51          

    Accumulator 4.61          

        49.57         

    Cabinet 243.13          

    Duct 12.65          

    

Evaporator 

case 19.4          

    Duct 5.25          

    Gasket 4.93          

    Door plastic 47.19          

    SPCB 46.93          

    Tank 33.39          

        412.87         

    Cabinet pipe 5.58          

    Dryer 3.96          

        9.54         

    Evaporator 14.01          

    Heater 13.44          

        27.45         

                  

 

 

Table A2.2: Operations cost of each node of refrigerator SN 

Tier 2 supply 

stage node 
Tier 1 supply stage node 

Manufacturing 

SN node 

Distribution SN 

node 

Type 

OP 

cost 

($) 

Type 
OP  cost ($) 

Type 

OP  

cost 

($) 

Type 

OP  

cost 

($) Individual Total 

Fe 49 Cabinet frame 53.13  Product 10 Storing 5 

Plastic 88 Door1 19.1  assembly   and   

Cu 5 Door2 6.44      dispatching   
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Table A2.3: Operations time of each node of refrigerator SN 

Tier 2 supply 

stage node 
Tier 1 supply stage node 

Manufacturing SN 

node 

Distribution SN 

node 

Type 

OP 

time 

(min) 

Type 
OP  time (min) 

Type  

OP 

time 

(min) 

Type 

OP 

time 

(min) Individual Total 

Fe 30 

Cabinet 

frame 30   Product  45 Storing  5 

Plastic 50 Door1 20  assembly   and   

Cu 10 Door2 20      dispatching   

Al 20 Door3 20          

    Door4 20          

    Base 15          

    Sideboard 12          

    Back grill  10          

    mpcb 10          

        157         

    Compressor 60          

    Radiator  30          

    fan motor 20          

    Accumulator 15          

        125         

    Cabinet 15          

    Duct 13          

    

Evaporator 

case 12          

    Duct 10          

    Gasket 10          

    Door plastic 7          

    SPCB 7          

    Tank 3          

        77         

    Cabinet pipe 7          

    Dryer 3          

        10         

    Evaporator 7          

    Heater 8          

        15         

                  

 

 

Table A2.3: Operations time of each node of refrigerator SN 

Tier 2 supply 

stage node 
Tier 1 supply stage node 

Manufacturing SN 

node 

Distribution SN 

node 

Type 

OP 

time 

(min) 

Type 
OP  time (min) 

Type  

OP 

time 

(min) 

Type 

OP 

time 

(min) Individual Total 

Fe 30 

Cabinet 

frame 30   Product  45 Storing  5 

Plastic 50 Door1 20 assembly   and   
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Table A2.4: Energy consumption of each node of refrigerator SN 

Tier 2 supply stage 

node 
Tier 1 supply stage node 

Manufacturing SN 

node 
Distribution SN node 

Type 
OP energy 

(Kwh) 
Type  

OP energy (Kwh) 
Type  

OP 

energy 

(Kwh) 

Type 

OP 

energy 

(Kwh) Individual  Total 

Fe 340.26825 Cabinet frame 73   Product  0.15 Storing  0.05 

Plastic 1319.963 Door1 8.3  assembly   and   

Cu 17.360625 Door2 2.1      dispatching   

Al 94.99734 Door3 5.6          

    Door4 5.6          

    Base 3.8          

    Sideboard 3          

    Back grill  3          

    mpcb 1.1          

        105.5         

    Compressor 24.7          

    Radiator  8.2          

    fan motor 1.5          

    Accumulator 0.6          

        35         

    Cabinet 1          

    Duct 3.2          

    

Evaporator 

case 1.6          

    Duct 5.2          

    Gasket 0.5          

    Door plastic 33.8          

    SPCB 15.7          

    Tank 4.4          

        65.4         

    Cabinet pipe 1          

    Dryer 0.3          

        1.3         

    Evaporator 1.6          

    Heater 0.4          

        2         

                  

 

 

Table A2.4: Energy consumption of each node of refrigerator SN 

Tier 2 supply stage 

node 
Tier 1 supply stage node 

Manufacturing SN 

node 
Distribution SN node 

Type 
OP energy 

(Kwh) 
Type  

OP energy (Kwh) 
Type  

OP 

energy 

(Kwh) 

Type 

OP 

energy 

(Kwh) Individual  Total 

Fe 340.26825 Cabinet frame 73   Product  0.15 Storing  0.05 

Plastic 1319.963 Door1 8.3 assembly   and   
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Table A2.5: List of SN entity attributes 

N
o

d
e 

C
it

y
 

S
N

 e
n

ti
ty

 

in
d

ex
 

P
C

ij
k
 (

$
) 

 

P
T

ij
k
 

(m
in

s)
 

 

A
C

ij
k
  

  
 

(i
n

 u
n

it
s)

 

 

𝝀
𝒊𝒋

𝒌
𝟏

 

𝝀
𝒊𝒋

𝒌
𝟐

 

E
C

ij
k
 (

K
J

) 

1 Madrid 111 60 39 9000 0.3 0.2 20 

 Lyon 112 71 36 12600 0.4 0.3 30 

 Nice 113 69 37 14400 0.5 0.4 25 

 Naples 114 63 40 15120 0.1 0 22 

 Berlin 115 67 30 16920 0.2 0.1 23 

 Stuttgart 116 68 31 16560 0 0.1 21 

 Essen 117 65 30 15120 0.11 0.2 20 

 Krakow 118 50 35 14400 0.15 0.23 15 

 Kharkiv 119 47 43 13320 0.22 0.14 17 

 Odessa 1110 48 45 14040 0.32 0.15 13 

2 Barcelona 121 95 64 21600 12 0.25 5 

 Sevilla 122 94 63 14400 10 0.15 3 

 Nantes 123 109 60 23400 15 0.02 2 

 Zurich 124 92 57 25200 17 0.001 3 

 Lausanne 125 91 56 22680 10 0.001 4 

 Winterthur 126 90 55 25920 12 0.02 6 

 Milan 127 103 65 21600 15 1.5 1 

 Dortmund 128 107 50 19800 14 0.5 2 

 Istanbul 129 100 75 20520 10 0.55 3 

 Izmir 1210 102 76 21600 20 1 2 

3 Lisbon 131 9 10 10800 15 2 2 

 Amadora 132 8 11 16200 10 1 3 

 Coimbra 133 7 9 12600 12 1.5 2 

 Szeged 134 6 14 14400 17 3 1 

 Plovdiv 135 5 14 15120 15 1 1 

 Varna 136 4 15 13320 20 2.5 3 

 Burgas 137 5 14 18000 25 1 5 

 Vienna 138 10 12 16200 22 1.5 2 

 Linz 139 11 12 14400 21 2 4 

4 Valencia 141 16 20 16200 0.3 0.4 17 

 Paris 142 15 23 12600 0.4 0.3 20 

 Bucharest 143 18 15 14400 0.5 0.2 15 

 Craiova 144 17 20 18000 0.2 0 18 

 Kiev 145 30 25 18720 0.1 0.1 20 

 Athens 146 15 21 18000 0 0.2 21 

 Heraklion 147 18 19 16200 0 0.3 23 

 Volos 148 16 20 16920 0.4 0.1 20 
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5 Almada 251 186 160 7200 0.3 0.4 20 

 Zaragoza 252 188 156 18000 0.4 0.3 22 

 Marseille 253 195 154 5400 0.5 0.2 23 

 Basel 254 187 150 9000 0.3 0 19 

 Turin 255 189 158 10800 0.2 0.1 18 

 Munich 256 191 147 8640 0.1 0.2 20 

 
Amsterda

m 
257 192 153 7200 0.4 0.15 21 

 Groningen 258 193 154 9000 0 0 22 

6 Presov 261 52 145 7200 0.3 0.4 40 

 Trnava 262 53 144 9000 0.4 0.3 42 

 Martin 263 52 145 10800 0.1 0.2 40 

 Dnipro 264 49 147 12600 0.2 0.1 35 

 Larissa 265 54 143 7200 0 0 30 

 Jonava 266 51 146 8640 0.2 0 32 

 Ankara 267 56 135 7200 0.3 0.2 40 

7 Antwerp 271 425 17 21600 0.3 0.4 10 

 Brussels 272 424 15 9000 0.4 0.3 12 

 Geneva 273 415 20 7920 0.5 0.2 10 

 Rotterdam 274 422 25 19800 0.1 0 12 

 Katowicw 275 413 21 22320 0.2 0 15 

 Ostrava 276 414 20 21600 0 0.2 20 

 Budapest 277 412 23 20520 0 0.3 17 

 Alytus 278 412 25 19800 0.1 0.15 20 

 Salzburg 279 421 27 20000 0 0.2 15 

 Bursa 2710 417 20 19000 0 0.1 16 

8 Porto 281 13 14 14400 0.3 0.4 9 

 Braga 282 12 15 16200 0.4 0.3 7 

 Ghent 283 20 12 15480 0.5 0.2 6 

 Bruges 284 19 13 25200 0.5 0.2 5 

 Eindhoven 285 16 10 12600 0.2 0.1 10 

 Bratislava 286 11 20 15120 0.15 0.15 12 

 Nitra 287 10 19 13500 0.1 0 11 

 Sofia 288 8 21 14000 0.4 0.3 13 

 Ruse 289 9 22 14500 0.2 0 10 

 Innsbruck 2810 15 18 15000 0 0.1 9 

9 Murcia 291 32 18 16200 0.3 0.4 9 

 Toulouse 292 40 16 19800 0.4 0.3 5 

 Rome 293 33 20 18000 0.2 0 10 
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 Lublin 294 28 15 18720 0.1 0.15 12 

 Prague 295 32 16 16200 0.15 0.2 15 

 Olomouc 296 31 17 16920 0.2 0.3 10 

 Košice 297 30 27 18000 0 0.15 9 

 Iași 298 28 21 18000 0.2 0.2 10 

 Donetsk 299 27 25 17500 0.1 0.1 12 

 Patras 2910 33 25 16000 0.3 0.15 11 

 Graz 2911 35 26 15000 0 0.25 15 

10 Namur 3101 25 50 18000 0.3 0.4 10 

 Bern 3102 18 48 19800 0.4 0.3 12 

 Palermo 3103 22 51 21600 0.3 0.4 9 

 Hamburg 3104 24 45 18000 0 0 15 

 Warsaw 3105 12 49 16200 0.2 0 12 

 Oradea 3106 10 52 16920 0.3 0.15 14 

 Kaunas 3107 11 60 15120 0.5 0.6 13 

11 Funchal 4111 9 23 9000 0.3 0.4 20 

 Palma 4112 10 19 12600 0.4 0.3 15 

 Bilbao 4113 10 18 14400 0.4 0.3 25 

 Strasbourg 4114 16 16 15120 0.2 0 20 

 Lille 4115 15 17 14400 0.5 0.2 25 

 Leuven 4116 17 20 12600 0.3 0 30 

 Genoa 4117 11 21 10800 0.1 0.15 32 

 Bologna 4118 11 22 9000 0.3 0.4 20 

 Dresden 4119 12 21 12600 0.4 0.3 15 

 Bremen 4120 14 10 14400 0.4 0.3 25 

 Utrecht 4121 14 15 15120 0.2 0 20 

 Poznan 4122 7 14 14400 0.5 0.2 25 

 Brno 4123 8 17 12600 0.3 0 30 

 Liberec 4124 8 16 10800 0.1 0.15 32 

 Debrecen 4125 7 28 9000 0.3 0.4 20 

 Arad 4126 6 20 12600 0.4 0.3 15 

 Zaporizhia 4127 5 21 14400 0.4 0.3 25 

 loannina 4128 5 22 15120 0.2 0 20 

 Pleven 4129 4 28 14400 0.5 0.2 25 

 Rhodes 4130 4 27 12600 0.3 0 30 

 Klagenfurt 4131 4 26 10800 0.1 0.15 32 

 Vilnius 4132 7 25 12500 0 0.1 25 

 Bregenz 4133 6 25 10000 0 0.2 20 
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Table A2.6: Country-specific details 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Country labour cost 

(hourly) 

Manufacturing 

Competitiveness Index 

Investment on high-tech 

industries (in Euro millions)  

Belgium 39.6 48.3 830 

Bulgaria 4.9 43.2 93 

Czech Republic 11.3 55.3 316 

Denmark 42.5 74.2 507 

Germany  34.1 93.9 4914 

Greece 14.5 10 53 

Spain 21.2 50.6 504 

France 36.0 55.5 2047 

Italy 28.2 46.5 1273 

Lithuania 8.0 12.1 18 

Hungary 9.1 13.5 462 

Netherlands 34.8 55.7 confidential 

Austria 34.1 58.9 625 

Poland 9.4 59.1 266 

Portugal 14.1 37.9 105 

Romania 6.3 42.8 229 

Slovakia 11.1 32.5 102 

Switzerland 58.4 63.6 3059 

Ukrain 32.2 53.6 not available 

Turkey 35.6 46.2 not available 
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