2,450 research outputs found

    A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    Get PDF
    The nickel-hydrogen secondary battery system is now the one of choice for use in GEO satellites. It offers superior energy density to that of nickel-cadmium, with a lifetime that is at least comparable in terms of both cycle life and overall operating life. While the number of deep cycles required for GEO use is small, LEO satellites with long lifetimes (5 to 10 years) will require secondary battery systems allowing 30,000 to 60,000 useful cycles which are characterized by an approximately 2C charge rate and C average discharge rate. Recent work has shown that birnessite MnO2 doped with bismuth oxide can be cycled at very high rates (6C) over a very large number of cycles (thousands) at depths-of-discharge in the 85 to 90 percent range, based on two electrons, which discharge at the same potential in a flat plateau. The potential is about 0.7 V vs. hydrogen, with a cut-off at 0.6 V. At first sight, this low voltage would seem to be a disadvantage, since the theoretical energy density will be low. However, it permits the use of lightweight materials that are immune from corrosion at the positive. The high utilization and low equivalent weight of the active material, together with the use of teflon-bonded graphite for current collection, result in very light positives, especially when these are compared with those in a derated nickel-hydrogen system. In addition, the weight of the pressure vessel falls somewhat, since the dead volume is lower. Calculations show that a total system will have 2.5 times the Ah capacity of a derated nickel-hydrogen LEO battery, so that the energy density, based on 1.2 V for nickel-hydrogen and 0.7 V for MnO2-hydrogen, will be 45 percent higher for comparable cycling performance

    A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    Get PDF
    The nickel-hydrogen secondary battery system, developed in the early 1970s, has become the system of choice for geostationary earth orbit (GEO) applications. However, for low earth orbit (LEO) satellites with long expected lifetimes the nickel positive limits performance. This requires derating of the cell to achieve very long cycle life. A new system, rechargeable MnO2-Hydrogen, which does not require derating, is described here. For LEO applications, it promises to have longer cycle life, high rate capability, a higher effective energy density, and much lower self-discharge behavior than those of the nickel-hydrogen system

    A universal form of slow dynamics in zero-temperature random-field Ising model

    Full text link
    The zero-temperature Glauber dynamics of the random-field Ising model describes various ubiquitous phenomena such as avalanches, hysteresis, and related critical phenomena. Here, for a model on a random graph with a special initial condition, we derive exactly an evolution equation for an order parameter. Through a bifurcation analysis of the obtained equation, we reveal a new class of cooperative slow dynamics with the determination of critical exponents.Comment: 4 pages, 2 figure

    Dimer coverings on the Sierpinski gasket with possible vacancies on the outmost vertices

    Full text link
    We present the number of dimers Nd(n)N_d(n) on the Sierpinski gasket SGd(n)SG_d(n) at stage nn with dimension dd equal to two, three, four or five, where one of the outmost vertices is not covered when the number of vertices v(n)v(n) is an odd number. The entropy of absorption of diatomic molecules per site, defined as SSGd=limnlnNd(n)/v(n)S_{SG_d}=\lim_{n \to \infty} \ln N_d(n)/v(n), is calculated to be ln(2)/3\ln(2)/3 exactly for SG2(n)SG_2(n). The numbers of dimers on the generalized Sierpinski gasket SGd,b(n)SG_{d,b}(n) with d=2d=2 and b=3,4,5b=3,4,5 are also obtained exactly. Their entropies are equal to ln(6)/7\ln(6)/7, ln(28)/12\ln(28)/12, ln(200)/18\ln(200)/18, respectively. The upper and lower bounds for the entropy are derived in terms of the results at a certain stage for SGd(n)SG_d(n) with d=3,4,5d=3,4,5. As the difference between these bounds converges quickly to zero as the calculated stage increases, the numerical value of SSGdS_{SG_d} with d=3,4,5d=3,4,5 can be evaluated with more than a hundred significant figures accurate.Comment: 35 pages, 20 figures and 1 tabl

    Spanning trees on the Sierpinski gasket

    Full text link
    We obtain the numbers of spanning trees on the Sierpinski gasket SGd(n)SG_d(n) with dimension dd equal to two, three and four. The general expression for the number of spanning trees on SGd(n)SG_d(n) with arbitrary dd is conjectured. The numbers of spanning trees on the generalized Sierpinski gasket SGd,b(n)SG_{d,b}(n) with d=2d=2 and b=3,4b=3,4 are also obtained.Comment: 20 pages, 8 figures, 1 tabl

    Distribution of sizes of erased loops of loop-erased random walks in two and three dimensions

    Get PDF
    We show that in the loop-erased random walk problem, the exponent characterizing probability distribution of areas of erased loops is superuniversal. In d-dimensions, the probability that the erased loop has an area A varies as A^{-2} for large A, independent of d, for 2 <= d <= 4. We estimate the exponents characterizing the distribution of perimeters and areas of erased loops in d = 2 and 3 by large-scale Monte Carlo simulations. Our estimate of the fractal dimension z in two-dimensions is consistent with the known exact value 5/4. In three-dimensions, we get z = 1.6183 +- 0.0004. The exponent for the distribution of durations of avalanche in the three-dimensional abelian sandpile model is determined from this by using scaling relations.Comment: 25 pages, 1 table, 8 figure

    Magnetic structure of EuFe2As2 determined by single crystal neutron diffraction

    Get PDF
    Among various parent compounds of iron pnictide superconductors, EuFe2As2 stands out due to the presence of both spin density wave of Fe and antiferromagnetic ordering (AFM) of the localized Eu2+ moment. Single crystal neutron diffraction studies have been carried out to determine the magnetic structure of this compound and to investigate the coupling of two magnetic sublattices. Long range AFM ordering of Fe and Eu spins was observed below 190 K and 19 K, respectively. The ordering of Fe2+ moments is associated with the wave vector k = (1,0,1) and it takes place at the same temperature as the tetragonal to orthorhombic structural phase transition, which indicates the strong coupling between structural and magnetic components. The ordering of Eu moment is associated with the wave vector k = (0,0,1). While both Fe and Eu spins are aligned along the long a axis as experimentally determined, our studies suggest a weak coupling between the Fe and Eu magnetism.Comment: 7 pages, 7 figure

    Exact Solution of Return Hysteresis Loops in One Dimensional Random Field Ising Model at Zero Temperature

    Full text link
    Minor hysteresis loops within the main loop are obtained analytically and exactly in the one-dimensional ferromagnetic random field Ising-model at zero temperature. Numerical simulations of the model show excellent agreement with the analytical results

    From Gravitons to Giants

    Full text link
    We discuss exact quantization of gravitational fluctuations in the half-BPS sector around AdS5×_5 \times S5^5 background, using the dual super Yang-Mills theory. For this purpose we employ the recently developed techniques for exact bosonization of a finite number NN of fermions in terms of NN bosonic oscillators. An exact computation of the three-point correlation function of gravitons for finite NN shows that they become strongly coupled at sufficiently high energies, with an interaction that grows exponentially in NN. We show that even at such high energies a description of the bulk physics in terms of weakly interacting particles can be constructed. The single particle states providing such a description are created by our bosonic oscillators or equivalently these are the multi-graviton states corresponding to the so-called Schur polynomials. Both represent single giant graviton states in the bulk. Multi-particle states corresponding to multi-giant gravitons are, however, different, since interactions among our bosons vanish identically, while the Schur polynomials are weakly interacting at high enough energies.Comment: v2-references added, minor changes and typos corrected; 24 pages, latex, 3 epsf figure

    Remark about string field for general configuration of N D-instantons

    Get PDF
    In this paper we would like to suggest matrix form of the string field for any configuration of N D-instantons in bosonic string field theory.Comment: 17 pages, R1:corrected some typos, reference adde
    corecore