20 research outputs found

    Urocortin 3 overexpression reduces ER stress and heat shock response in 3T3-L1 adipocytes

    Get PDF
    The neuropeptide urocortin 3 (UCN3) has a beneficial effect on metabolic disorders, such as obesity, diabetes, and cardiovascular disease. It has been reported that UCN3 regulates insulin secretion and is dysregulated with increasing severity of obesity and diabetes. However, its function in the adipose tissue is unclear. We investigated the overexpression of UCN3 in 3T3-L1 preadipocytes and differentiated adipocytes and its effects on heat shock response, ER stress, inflammatory markers, and glucose uptake in the presence of stress-inducing concentrations of palmitic acid (PA). UCN3 overexpression significantly downregulated heat shock proteins (HSP60, HSP72 and HSP90) and ER stress response markers (GRP78, PERK, ATF6, and IRE1 alpha) and attenuated inflammation (TNF alpha) and apoptosis (CHOP). Moreover, enhanced glucose uptake was observed in both preadipocytes and mature adipocytes, which is associated with upregulated phosphorylation of AKT and ERK but reduced p-JNK. Moderate effects of UCN3 overexpression were also observed in the presence of 400 mu M of PA, and macrophage conditioned medium dramatically decreased the UCN3 mRNA levels in differentiated 3T3-L1 cells. In conclusion, the beneficial effects of UCN3 in adipocytes are reflected, at least partially, by the improvement in cellular stress response and glucose uptake and attenuation of inflammation and apoptosis.Peer reviewe

    Circulating levels of urocortin neuropeptides are impaired in children with overweight

    Get PDF
    Objective The corticotropin-releasing factor neuropeptides (corticotropin-releasing hormone [CRH] and urocortin [UCN]-1,2,3) and spexin contribute to the regulation of energy balance and inhibit food intake in mammals. However, the status of these neuropeptides in children with overweight has yet to be elucidated. This study investigated the effect of increased body weight on the circulating levels of these neuropeptides. Methods A total of 120 children with a mean age of 12 years were enrolled in the study. Blood samples were collected to assess the circulating levels of neuropeptides and were correlated with various anthropometric, clinical, and metabolic markers. Results Plasma levels of UCNs were altered in children with overweight but less so in those with obesity. Furthermore, the expression pattern of UCN1 was opposite to that of UCN2 and UCN3, which suggests a compensatory effect. However, no significant effect of overweight and obesity was observed on CRH and spexin levels. Finally, UCN3 independently associated with circulating zinc-alpha-2-glycoprotein and UCN2 levels, whereas UCN1 was strongly predicted by TNF alpha levels. Conclusions Significant changes in neuropeptide levels were primarily observed in children with overweight and were attenuated with increased obesity. This suggests the presence of a compensatory mechanism for neuropeptides to curb the progression of obesity.Peer reviewe

    Urocortin 3 Levels Are Impaired in Overweight Humans With and Without Type 2 Diabetes and Modulated by Exercise

    Get PDF
    Urocortin3 (UCN3) regulates metabolic functions and is involved in cellular stress response. Although UCN3 is expressed in human adipose tissue, the association of UCN3 with obesity and diabetes remains unclear. This study investigated the effects of Type 2 diabetes (T2D) and increased body weight on the circulatory and subcutaneous adipose tissue (SAT) levels of UCN3 and assessed UCN3 modulation by a regular physical exercise. Normal-weight (n = 37) and overweight adults with and without T2D (n = 98 and n = 107, respectively) were enrolled in the study. A subset of the overweight subjects (n = 39 for each group) underwent a supervised 3-month exercise program combining both moderate intensity aerobic exercise and resistance training with treadmill. UCN3 levels in SAT were measured by immunofluorescence and RT-PCR. Circulatory UCN3 in plasma was assessed by ELISA and was correlated with various clinical and metabolic markers. Our data revealed that plasma UCN3 levels decreased in overweight subjects without T2D compared with normal-weight controls [median; 11.99 (0.78–86.07) and 6.27 (0.64–77.04), respectively; p <0.001], whereas plasma UCN3 levels increased with concomitant T2D [median; 9.03 (0.77–104.92) p <0.001]. UCN3 plasma levels were independently associated with glycemic index; fasting plasma glucose and hemoglobin A1c (r = 0.16 and r = 0.20, p <0.05, respectively) and were significantly different between both overweight, with and without T2D, and normal-weight individuals (OR = 2.11 [1.84–4.11, 95% CI] and OR = 2.12 [1.59–3.10, 95% CI], p <0.01, respectively). Conversely, the UCN3 patterns observed in SAT were opposite to those in circulation; UCN3 levels were significantly increased with body weight and decreased with T2D. After a 3-month supervised exercise protocol, UCN3 expression showed a significant reduction in SAT of both overweight groups (2.3 and 1.6-fold change; p <0.01, respectively). In conclusion, UCN levels are differentially dysregulated in obesity in a tissue-dependent manner and can be mitigated by regular moderate physical exercise.Peer reviewe

    Urocortin Neuropeptide Levels Are Impaired in the PBMCs of Overweight Children

    Get PDF
    The corticotropin-releasing hormone (CRH) and urocortins (UCNs) have been implicated in energy homeostasis and the cellular stress response. However, the expression of these neuropeptides in children remains unclear. Therefore, we determined the impact of obesity on their expression in 40 children who were normal weight, overweight, and had obesity. Peripheral blood mononuclear cells (PBMCs) and plasma were used to assess the expression of neuropeptides. THP1 cells were treated with 25 mM glucose and 200 µM palmitate, and gene expression was measured by real-time polymerase chain reaction (RT-PCR). Transcript levels of neuropeptides were decreased in PBMCs from children with increased body mass index as indicated by a significant decrease in UCN1, UCN3, and CRH mRNA in overweight and obese children. UCN3 mRNA expression was strongly correlated with UCN1, UCN2, and CRH. Exposure of THP1 cells to palmitate or a combination of high glucose and palmitate for 24 h increased CRH, UCN2, and UCN3 mRNA expression with concomitant increased levels of inflammatory and endoplasmic reticulum stress markers, suggesting a crosstalk between these neuropeptides and the cellular stress response. The differential impairment of the transcript levels of CRH and UCNs in PBMCs from overweight and obese children highlights their involvement in obesity-related metabolic and cellular stress

    PR3 levels are impaired in plasma and PBMCs from Arabs with cardiovascular diseases.

    No full text
    Cardiovascular disease (CVD) risks persist in patients despite treatment. CVD susceptibility also varies with sex and ethnicity and is not entirely explained by conventional CVD risk factors. The aim of the present study was to identify novel CVD candidate markers in circulating Peripheral blood mononuclear cells (PBMCs) and plasma from Arab obese subjects with and without CVD using proteomic approaches. Human adults with confirmed CVD (n = 208) and matched non-CVD controls (n = 152) living in Kuwait were examined in the present cross-sectional study. Anthropometric and classical biochemical parameters were determined. We employed a shotgun proteomic profiling approach on PBMCs isolated from a subset of the groups (n = 4, each), and differentially expressed proteins selected between the two groups were validated at the mRNA level using RT-PCR (n = 6, each). Plasma levels of selected proteins from the proteomics profiling: Proteinase-3 (PR3), Annexin-A3 (ANX3), Defensin (DEFA1), and Matrix Metalloproteinase-9 (MMP9), were measured in the entire cohort using human enzyme-linked immunosorbent assay kits and were subsequently correlated with various clinical parameters. Out of the 1407 we identified and quantified from the proteomics profiling, 47 proteins were dysregulated with at least twofold change between the two subject groups. Among the differentially expressed proteins, 11 were confirmed at the mRNA levels. CVD influenced the levels of the shortlisted proteins (MMP9, PR3, ANX3, and DEFA1) in the PBMCs and plasma differentially. Despite the decreased levels of both protein and mRNA in PBMCs, PR3 circulating levels increased significantly in patients with CVD and were influenced by neither diabetes nor statin treatment. No significant changes were; however, observed in the DEFA1, MMP9, and ANX3 levels in plasma. Multivariate logistic regression analysis revealed that only PR3 was independently associated with CVD. Our results suggest that the dysregulation of PR3 levels in plasma and PBMCs reflects underlying residual CVD risks even in the treated population. More prospective and larger studies are required to establish the role of PR3 in CVD progression

    Plasma and adipose tissue level of angiopoietin-like 7 (ANGPTL7) are increased in obesity and reduced after physical exercise.

    No full text
    ANGPTL7 is a member of the Angiopoietin-like (ANGPTL) protein family that is composed of eight proteins (1-8). Increasing evidence is associating ANGPTL proteins to obesity and insulin resistance. The biological role of ANGPTL7 is yet to be understood except for a recently proposed role in the pathophysiology of glaucoma. This study was designed to shed light on the function of ANGPTL7 in obesity and its modulation by physical exercise as well as its potential association with lipid profile.A total of 144 subjects were enrolled in this study and finished three months of physical exercise. The participants were classified based on their BMI, 82 subjects were non-obese and 62 obese. ANGPTL7 levels in plasma and adipose tissue were measured by ELISA, RT-PCR and immunohistochemistry.In this study, we showed that ANGPTL7 level was increased in the plasma of obese subjects (1249.05± 130.39 pg/mL) as compared to non-obese (930.34 ± 87.27 pg/mL) (p-Value = 0.032). ANGPTL7 Gene and protein expression levels in adipose tissue also showed over two fold increase. Physical exercise reduced circulating level of ANGPTL7 in the obese subjects to 740.98± 127.18 pg/mL, (p-Value = 0.007). ANGPTL7 expression in adipose tissue was also reduced after exercise. Finally, ANGPTL7 circulating level showed significant association with TG level in the obese subjects (R2 = 0.183, p-Value = 0.03).In conclusion, our data shows for the first time that obesity increases the level of ANGPTL7 in both plasma and adipose tissue. Increased expression of ANGPTL7 might play a minor role in the regulation of TG level in obese subjects either directly or through interaction with other ANGPTL protein members. Physical exercise reduced the level of ANGPTL7 highlighting the potential for targeting this protein as a therapeutic target for regulating dyslipidemia
    corecore