11 research outputs found

    Advancing of Cellular Signaling Pathways in Respiratory Diseases Using Nanocarrier based Drug Delivery Systems.

    Full text link
    Cell Signaling pathways form an integral part of our existence, that allows the cells to comprehend a stimulus and respond back. Such reactions, to external cues from the environment, are required and are essential to regulate the normal functioning of our body. Abnormalities in the system arise when there are errors developed in these signals, resulting in a complication or a disease. Presently, respiratory diseases contribute to being the third leading cause of morbidity worldwide. According to the current statistics, over 339 million people who are asthmatic, 65 million who are suffering from COPD, 2.3 million who are lung cancer patients and 10 million are tuberculosis patients. This toll of statistics with chronic respiratory diseases leaves a heavy burden on society and nation annual health expenditure. Hence, a better understanding of the processes governing these cellular pathways will enable us to treat and manage these deadly respiratory diseases effectively. Moreover, it is important to comprehend the synergy and interplay of the cellular signaling pathways in respiratory diseases, which will enable us to explore and develop suitable strategies for targeted drug delivery. This review, in particular, focuses on the major respiratory diseases and further provides an in-depth discussion on the various cell signaling pathways that are involved in the pathophysiology of respiratory diseases. Moreover, the review also analyses the defining concepts about advanced nano-drug delivery systems involving various nanocarriers and propose newer prospects to minimize the current challenges faced by researchers and formulation scientists

    Emerging trends in the novel drug delivery approaches for the treatment of lung cancer

    Get PDF
    © 2019 Elsevier B.V. Cancer is one of the major diseases that cause a high number of deaths globally. Of the major types of cancers, lung cancer is known to be the most chronic form of cancer in the world. The conventional management of lung cancer includes different medical interventions like chemotherapy, surgical removal, and radiation therapy. However, this type of approach lacks specificity and also harms the adjacent normal cells. Lately, nanotechnology has emerged as a promising intervention in the management and treatment of lung cancers. Nanotechnology has revolutionized the existing modalities and focuses primarily on reducing toxicity and improving the bioavailability of anticancer drugs to the target tumor cells. Nanocarrier systems are being currently used extensively to exploit and to overcome the obstructions induced by cancers in the lungs. The nano-carrier-loaded therapeutic drug delivery methods have shown promising potential in treating lung cancer as its target is to control the growth of tumor cells. In this review, various modes of nano drug delivery options like liposomes, dendrimers, quantum dots, carbon nanotubes and metallic nanoparticles have been discussed. Nano-carrier drug delivery systems emerge as a promising approach and thus is expected to provide newer and advanced avenues in cancer therapeutics

    Potential usage of edible mushrooms and their residues to retrieve valuable supplies for industrial applications

    Get PDF
    Currently, the food and agricultural sectors are concerned about environmental problems caused by raw material waste, and they are looking for strategies to reduce the growing amount of waste disposal. Now, approaches are being explored that could increment and provide value-added products from agricultural waste to contribute to the circular economy and environmental protection. Edible mushrooms have been globally appreciated for their medicinal properties and nutritional value, but during the mushroom production process nearly one-fifth of the mushroom gets wasted. Therefore, improper disposal of mushrooms and untreated residues can cause fungal disease. The residues of edible mushrooms, being rich in sterols, vitamin D2, amino acids, and polysaccharides, among others, makes it underutilized waste. Most of the published literature has primarily focused on the isolation of bioactive components of these edible mushrooms; however, utilization of waste or edible mushrooms themselves, for the production of value-added products, has remained an overlooked area. Waste of edible mushrooms also represents a disposal problem, but they are a rich source of important compounds, owing to their nutritional and functional properties. Researchers have started exploiting edible mushroom by-products/waste for value-added goods with applications in diverse fields. Bioactive compounds obtained from edible mushrooms are being used in media production and skincare formulations. Furthermore, diverse applications from edible mushrooms are also being explored, including the synthesis of biosorbent, biochar, edible films/coating, probiotics, nanoparticles and cosmetic products. The primary intent of this review is to summarize the information related to edible mushrooms and their valorization in developing value-added products with industrial applications.This research was funded by the UHK (Faculty of Science, VT2019-2021)

    Conifers phytochemicals: A valuable forest with therapeutic potential

    Get PDF
    Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.This research was funded by University of Hradec Kralove (Faculty of Science VT 2019-2021)

    Targeting eosinophils in chronic respiratory diseases using nanotechnology-based drug delivery.

    Full text link
    Asthma, COPD, COVID-19, EGPA, Lung cancer, and Pneumonia are major chronic respiratory diseases (or CRDs) affecting millions worldwide and account for substantial morbidity and mortality. These CRDs are irreversible diseases that affect different parts of the respiratory system, imposing a considerable burden on different socio-economic classes. All these CRDs have been linked to increased eosinophils in the lungs. Eosinophils are essential immune mediators that contribute to tissue homeostasis and the pathophysiology of various diseases. Interestingly, elevated eosinophil level is associated with cellular processes that regulate airway hyperresponsiveness, airway remodeling, mucus hypersecretion, and inflammation in the lung. Therefore, eosinophil is considered the therapeutic target in eosinophil-mediated lung diseases. Although, conventional medicines like antibiotics, anti-inflammatory drugs, and bronchodilators are available to prevent CRDs. But the development of resistance to these therapeutic agents after long-term usage remains a challenge. However, progressive development in nanotechnology has unveiled the targeted nanocarrier approach that can significantly improve the pharmacokinetics of a therapeutic drug. The potential of the nanocarrier system can be specifically targeted on eosinophils and their associated components to obtain promising results in the pharmacotherapy of CRDs. This review intends to provide knowledge about eosinophils and their role in CRDs. Moreover, it also discusses nanocarrier drug delivery systems for the targeted treatment of CRDs

    Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases.

    Get PDF
    Both communicable and non-communicable chronic respiratory conditions have accorded for suffering of millions of people of all ages and stated to be leading cause of death, morbidity, economic and social pressures, and disability-adjusted life-years (DALYs) worldwide. These illnesses impair patient's health and negatively impacts families and society, particularly in low and middle-income countries. Chronic respiratory diseases (CRDs) affect different organs of respiratory system, involving airways, parenchyma, and pulmonary vasculature. As the number of respiratory diseases are exponentially escalating but still the stakeholders are not paying attention towards its serious complications. Currently, the treatment being used primarily focusses only on alleviating symptoms of these illness rather delivering the therapeutic agent at target site for optimal care and/or prevention. Lately, extensive research is being conducted on airways and systemic inflammation, oxidative stress, airway, or parenchymal rehabilitation. From which macrophages, neutrophils, and T cells, as well as structural cells as fibroblasts, epithelial, endothelial, and smooth muscle cells have been found to be active participants that are involved in these chronic respiratory diseases. The pathogenesis of all these chronic respiratory diseases gets caused differently via mediators and proteins, including cytokines, chemokines, growth factors and oxidants. Presently, the target of prescription therapies is to reduce the inflammation of airways and relieve the airway contraction. In all studies, cytokines have been found to play an imperative role in fostering chronic airway inflammation and remodelling. Owing to the limitations of conventional treatments, the current review aims to summarize the current knowledge about the chronic respiratory disease and discuss further about the various conventional methods that can be used for treating this ailment. Additionally, it also highlights and discusses about the advanced drug delivery system that are being used for targeting the interleukins for the treatment of CRDs

    Perfluorocarbons Therapeutics in Modern Cancer Nanotechnology for Hypoxiainduced Anti-tumor Therapy.

    Full text link
    With an estimated failure rate of about 90%, immunotherapies that are intended for the treatment of solid tumors have caused an anomalous rise in the mortality rate over the past decades. It is apparent that resistance towards such therapies primarily occurs due to elevated levels of HIF-1 (Hypoxia-induced factor) in tumor cells, which are caused by disrupted microcirculation and diffusion mechanisms. With the advent of nanotechnology, several innovative advances were brought to the fore; and, one such promising direction is the use of perfluorocarbon nanoparticles in the management of solid tumors. Perfluorocarbon nanoparticles enhance the response of hypoxia-based agents (HBAs) within the tumor cells and have been found to augment the entry of HBAs into the tumor micro-environment. The heightened penetration of HBAs causes chronic hypoxia, thus aiding in the process of cell quiescence. In addition, this technology has also been applied in photodynamic therapy, where oxygen self-enriched photosensitizers loaded perfluorocarbon nanoparticles are employed. The resulting processes initiate a cascade, depleting tumour oxygen and turning it into a reactive oxygen species eventually to destroy the tumour cell. This review elaborates on the multiple applications of nanotechnology based perfluorocarbon formulations that are being currently employed in the treatment of tumour hypoxia

    Hypoxia-Inducible Factor (HIF): Fuel for Cancer Progression.

    Full text link
    Hypoxia is an integral part of the tumor microenvironment, caused primarily due to rapidly multiplying tumor cells and a lack of proper blood supply. Among the major hypoxic pathways, HIF-1 transcription factor activation is one of the widely investigated pathways in the hypoxic tumor microenvironment (TME). HIF-1 is known to activate several adaptive reactions in response to oxygen deficiency in tumor cells. HIF-1 has two subunits, HIF-1β (constitutive) and HIF-1α (inducible). The HIF-1α expression is largely regulated via various cytokines (through PI3K-ACT-mTOR signals), which involves the cascading of several growth factors and oncogenic cascades. These events lead to the loss of cellular tumor suppressant activity through changes in the level of oxygen via oxygen-dependent and oxygen-independent pathways. The significant and crucial role of HIF in cancer progression and its underlying mechanisms have gained much attention lately among the translational researchers in the fields of cancer and biological sciences, which have enabled them to correlate these mechanisms with various other disease modalities. In the present review, we have summarized the key findings related to the role of HIF in the progression of tumors
    corecore