195 research outputs found

    Local methylthiolate adsorption geometry on Au(111) from photoemission core-level shifts

    Get PDF
    The local adsorption structure of methylthiolate in the ordered Au(111)-(√3×√3)R30° phase has been investigated using core-level-shift measurements of the surface and bulk components of the Au 4f7/2 photoelectron binding energy. The amplitude ratio of the core-level-shift components associated with surface Au atoms that are, and are not, bonded to the thiolate is found to be compatible only with the previously proposed Au-adatom-monothiolate moiety in which the thiolate is bonded atop Au adatoms in hollow sites, and not on an unreconstructed surface, or in Au-adatom-dithiolate species

    The local adsorption site of methylthiolate on Au(1 1 1): Bridge or atop?

    Get PDF
    Measurements of the local adsorption geometry of the S head-group atom in the Au(1 1 1)(√3 × √3)R30°–CH3S surface have been made using normal incidence X-ray standing waves (NIXSW) and S 1s scanned-energy mode photoelectron diffraction on the same surface preparations. The results confirm that the local adsorption site is atop an Au atom in a bulk-continuation site with a S–Au bondlength of 2.42 ± 0.02 Å, and that there can be no significant fraction of coadsorbed bridging species as recently proposed in a combined molecular dynamics/experimental study by Mazzarello et al. [R. Mazzarello, A. Cossaro, A. Verdini, R. Rousseau, L. Casalis, M.F. Danisman, L. Floreano, S. Scandolo, A. Morgante, G. Scoles, Phys. Rev. Lett. 98 (2007) 016102]. The results do not, however, clearly distinguish the different local reconstruction (adatom) models proposed for this surface

    A Model for User's Service: Providing for Information and Data Retrieval from an Archival, User, and Development Library

    Get PDF
    A Model for User's Service: Providing for Information and Data Retrieval from an Archival, User, and Development Librar

    Controlled modification of resonant tunneling in metal-insulator-insulator-metal structures

    Get PDF
    We present comprehensive experimental and theoretical work on tunnel-barrier rectifiers comprising bilayer (Nb2O5/Al2O3) insulator configurations with similar (Nb/Nb) and dissimilar (Nb/Ag) metal electrodes. The electron affinity, valence band offset, and metal work function were ascertained by X-ray photoelectron spectroscopy, variable angle spectroscopic ellipsometry, and electrical measurements on fabricated reference structures. The experimental band line-up parameters were fed into a theoretical model to predict available bound states in the Nb2O5/Al2O3 quantum well and generate tunneling probability and transmittance curves under applied bias. The onset of strong resonance in the sub-V regime was found to be controlled by a work function difference of Nb/Ag electrodes in agreement with the experimental band alignment and theoretical model. A superior low-bias asymmetry of 35 at 0.1 V and a responsivity of 5 A/W at 0.25 V were observed for the Nb/4 nm Nb2O5/1 nm Al2O3/Ag structure, sufficient to achieve a rectification of over 90% of the input alternate current terahertz signal in a rectenna device

    Ge interface engineering using ultra-thin La2O3 and Y2O3 films: A study into the effect of deposition temperature

    Get PDF
    A study into the optimal deposition temperature for ultra-thin La2O3/Ge and Y2O3/Ge gate stacks has been conducted in this paper with the aim to tailor the interfacial layer for effective passivation of the Ge interface. A detailed comparison between the two lanthanide oxides (La2O3 and Y2O3) in terms of band line-up, interfacial features, and reactivity to Ge using medium energy ion scattering, vacuum ultra-violet variable angle spectroscopic ellipsometry (VUV-VASE), X-ray photoelectron spectroscopy, and X-ray diffraction is shown. La2O3 has been found to be more reactive to Ge than Y2O3, forming LaGeOx and a Ge sub-oxide at the interface for all deposition temperature studied, in the range from 44 °C to 400 °C. In contrast, Y2O3/Ge deposited at 400 °C allows for an ultra-thin GeO2 layer at the interface, which can be eliminated during annealing at temperatures higher than 525 °C leaving a pristine YGeOx/Ge interface. The Y2O3/Ge gate stack deposited at lower temperature shows a sub-band gap absorption feature fitted to an Urbach tail of energy 1.1 eV. The latter correlates to a sub-stoichiometric germanium oxide layer at the interface. The optical band gap for the Y2O3/Ge stacks has been estimated to be 5.7 ± 0.1 eV from Tauc-Lorentz modelling of VUV-VASE experimental data. For the optimal deposition temperature (400 °C), the Y2O3/Ge stack exhibits a higher conduction band offset (>2.3 eV) than the La2O3/Ge (∼2 eV), has a larger band gap (by about 0.3 eV), a germanium sub-oxide free interface, and leakage current (∼10−7 A/cm2 at 1 V) five orders of magnitude lower than the respective La2O3/Ge stack. Our study strongly points to the superiority of the Y2O3/Ge system for germanium interface engineering to achieve high performance Ge Complementary Metal Oxide Semiconductor technology

    Schottky Diodes on ZnO Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

    Get PDF
    Enhancement of the properties of zinc oxide (ZnO)-based Schottky diodes has been explored using a combination of plasma-enhanced atomic layer deposition (PE-ALD) ZnO thin films and silver oxide Schottky contacts deposited by reactive radio-frequency sputtering. The electrical properties of the ZnO thin films were systematically tuned by varying the deposition temperature and oxygen plasma time during PE-ALD to optimize the performance of the diode. Low temperature (80 °C) coupled with relatively long oxygen plasma time (>30 s) PE-ALD is the key to produce ZnO films with net doping concentration lower than 10 17 cm -3 . Under the optimal deposition conditions identified, the diode shows an ideality factor of 1.33, an effective barrier height of 0.80 eV, and an ON/OFF ratio of 3.11 × 10 5

    An integration of attachment theory and reinforcement sensitivity theory

    Get PDF
    This thesis examined how relationship experiences shape people\u27s sensitivity to detect threat and reward in romantic relationships and substance use scenarios. Findings indicated that anxious individuals experienced difficulty in distinguishing between threat and reward. In contrast, avoidant individuals were quick to detect threat either fleeing or confronting the problem aggressively

    The structural analysis of Cu(111)-Te (√3 × √3) R30° and (2√3 × 2√3)R30° surface phases by quantitative LEED and DFT,

    Get PDF
    The chemisorption of tellurium on atomically clean Cu(111) surface has been studied under ultra-high vacuum conditions. At room temperature, the initial stage of growth was an ordered 23×23R30° phase (0.08 ML). An ordered 3×3R30° phase is formed at 0.33 ML coverage of Te. The adsorption sites of the Te atoms on the Cu(111) surface at 0.08 ML and 0.33 ML coverages are explored by quantitative low energy electron diffraction (LEED) and density functional theory (DFT). Our results indicate that substitutional surface alloy formation starts at very low coverages
    • …
    corecore