22 research outputs found

    Comparison and imputation-aided integration of five commercial platforms for targeted DNA methylome analysis

    Get PDF
    Targeted bisulfite sequencing (TBS) has become the method of choice for the cost-effective, targeted analysis of the human methylome at base-pair resolution. In this study, we benchmarked five commercially available TBS platforms-three hybridization capture-based (Agilent, Roche and Illumina) and two reduced-representation-based (Diagenode and NuGen)-across 11 samples. Two samples were also compared with whole-genome DNA methylation sequencing with the Illumina and Oxford Nanopore platforms. We assessed workflow complexity, on/off-target performance, coverage, accuracy and reproducibility. Although all platforms produced robust and reproducible data, major differences in the number and identity of the CpG sites covered make it difficult to compare datasets generated on different platforms. To overcome this limitation, we applied imputation and show that it improves interoperability from an average of 10.35% (0.8 million) to 97% (7.6 million) common CpG sites. Our study provides guidance on which TBS platform to use for different methylome features and offers an imputation-based harmonization solution that allows comparative, integrative analysis

    Donor whole blood DNA methylation is not a strong predictor of acute graft versus host disease in unrelated donor allogeneic haematopoietic cell transplantation

    Get PDF
    Allogeneic hematopoietic cell transplantation (HCT) is used to treat many blood-based disorders and malignancies. While this is an effective treatment, it can result in serious adverse events, such as the development of acute graft-versus-host disease (aGVHD). This study aimed to develop a donor-specific epigenetic classifier that could be used in donor selection in HCT to reduce the incidence of aGVHD. The discovery cohort of the study consisted of 288 donors from a population receiving HLA-A, -B, -C and -DRB1 matched unrelated donor HCT with T cell replete peripheral blood stem cell grafts for treatment of acute leukaemia or myelodysplastic syndromes after myeloablative conditioning. Donors were selected based on recipient aGVHD outcome; this cohort consisted of 144 cases with aGVHD grades III-IV and 144 controls with no aGVHD that survived at least 100 days post-HCT matched for sex, age, disease and GVHD prophylaxis. Genome-wide DNA methylation was assessed using the Infinium Methylation EPIC BeadChip (Illumina), measuring CpG methylation at >850,000 sites across the genome. Following quality control, pre-processing and exploratory analyses, we applied a machine learning algorithm (Random Forest) to identify CpG sites predictive of aGVHD. Receiver operating characteristic (ROC) curve analysis of these sites resulted in a classifier with an encouraging area under the ROC curve (AUC) of 0.91. To test this classifier, we used an independent validation cohort (n=288) selected using the same criteria as the discovery cohort. Different attempts to validate the classifier using the independent validation cohort failed with the AUC falling to 0.51. These results indicate that donor DNA methylation may not be a suitable predictor of aGVHD in an HCT setting involving unrelated donors, despite the initial promising results in the discovery cohort. Our work highlights the importance of independent validation of machine learning classifiers, particularly when developing classifiers intended for clinical use

    Systematic Evaluation of the Immune Environment of Small Intestinal Neuroendocrine Tumours

    Get PDF
    BACKGROUND: The immune tumour microenvironment and the potential therapeutic opportunities for immunotherapy in small intestinal neuroendocrine tumours (siNET) have not been fully defined. METHODS: Herein, we studied 40 patients with primary and synchronous metastatic siNETs , and matched blood and normal tissue obtained during surgery. We interrogated the immune checkpoint landscape using multi-parametric flow cytometry. Additionally, matched FFPE tissue was obtained for multi-parametric immunohistochemistry (IHC) to determine the relative abundance and distribution of T-cell infiltrate. Tumour mutational burden (TMB) was also assessed and correlated with immune infiltration. RESULTS: Effector tumour infiltrating lymphocytes had a higher expression of PD-1 in the tumour microenvironment compared to the periphery. Additionally, CD8+ tumour infiltrating lymphocytes had a significantly higher co-expression of PD-1/ICOS and PD-1/CTLA-4 and higher levels of PD-1 expression compared to normal tissue. IHC revealed that the majority of cases have {less than or equal to}10% intratumoural T cells but a higher number of peritumoural T cells, demonstrating an "exclusion" phenotype. Finally, we confirmed that siNETs have a low TMB compared to other tumour types in the TCGA database but did not find a correlation between TMB and CD8/Treg ratio. CONCLUSIONS: Taken together, these results suggest that a combination therapy approach will be required to enhance the immune response, using PD-1 as a checkpoint immunomodulator backbone in combination with other checkpoint targeting molecules (CTLA-4 or ICOS), or with drugs targeting other pathways to recruit "excluded" T cells into the tumour microenvironment to treat patients with siNETs

    Human marginal zone B cell development from early T2 progenitors.

    Get PDF
    B cells emerge from the bone marrow as transitional (TS) B cells that differentiate through T1, T2, and T3 stages to become naive B cells. We have identified a bifurcation of human B cell maturation from the T1 stage forming IgMhi and IgMlo developmental trajectories. IgMhi T2 cells have higher expression of α4β7 integrin and lower expression of IL-4 receptor (IL4R) compared with the IgMlo branch and are selectively recruited into gut-associated lymphoid tissue. IgMhi T2 cells also share transcriptomic features with marginal zone B cells (MZBs). Lineage progression from T1 cells to MZBs via an IgMhi trajectory is identified by pseudotime analysis of scRNA-sequencing data. Reduced frequency of IgMhi gut-homing T2 cells is observed in severe SLE and is associated with reduction of MZBs and their putative IgMhi precursors. The collapse of the gut-associated MZB maturational axis in severe SLE affirms its existence in health

    UroMark-a urinary biomarker assay for the detection of bladder cancer.

    Get PDF
    BACKGROUND: Bladder cancer (BC) is one of the most common cancers in the western world and ranks as the most expensive to manage, due to the need for cystoscopic examination. BC shows frequent changes in DNA methylation, and several studies have shown the potential utility of urinary biomarkers by detecting epigenetic alterations in voided urine. The aim of this study is to develop a targeted bisulfite next-generation sequencing assay to diagnose BC from urine with high sensitivity and specificity. RESULTS: We defined a 150 CpG loci biomarker panel from a cohort of 86 muscle-invasive bladder cancers and 30 normal urothelium. Based on this panel, we developed the UroMark assay, a next-generation bisulphite sequencing assay and analysis pipeline for the detection of bladder cancer from urinary sediment DNA. The 150 loci UroMark assay was validated in an independent cohort (n = 274, non-cancer (n = 167) and bladder cancer (n = 107)) voided urine samples with an AUC of 97%. The UroMark classifier sensitivity of 98%, specificity of 97% and NPV of 97% for the detection of primary BC was compared to non-BC urine. CONCLUSIONS: Epigenetic urinary biomarkers for detection of BC have the potential to revolutionise the management of this disease. In this proof of concept study, we show the development and utility of a novel high-throughput, next-generation sequencing-based biomarker for the detection of BC-specific epigenetic alterations in urine

    B cell profiles, antibody repertoire and reactivity reveal dysregulated responses with autoimmune features in melanoma

    Get PDF
    B cells are known to contribute to the anti-tumor immune response, especially in immunogenic tumors such as melanoma, yet humoral immunity has not been characterized in these cancers to detail. Here we show comprehensive phenotyping in samples of circulating and tumor-resident B cells as well as serum antibodies in melanoma patients. Memory B cells are enriched in tumors compared to blood in paired samples and feature distinct antibody repertoires, linked to specific isotypes. Tumor-associated B cells undergo clonal expansion, class switch recombination, somatic hypermutation and receptor revision. Compared with blood, tumor-associated B cells produce antibodies with proportionally higher levels of unproductive sequences and distinct complementarity determining region 3 properties. The observed features are signs of affinity maturation and polyreactivity and suggest an active and aberrant autoimmune-like reaction in the tumor microenvironment. Consistent with this, tumor-derived antibodies are polyreactive and characterized by autoantigen recognition. Serum antibodies show reactivity to antigens attributed to autoimmune diseases and cancer, and their levels are higher in patients with active disease compared to post-resection state. Our findings thus reveal B cell lineage dysregulation with distinct antibody repertoire and specificity, alongside clonally-expanded tumor-infiltrating B cells with autoimmune-like features, shaping the humoral immune response in melanoma
    corecore