858 research outputs found

    Diverse mechanisms of heart failure due to myocardial infarction : [abstract]

    Get PDF

    A Process Driven Dynamic Model for Petroleum Product Demand in Transportation Sector of India

    Get PDF
    This paper proposes a dynamic process to identify factors influencing the demand of transport fuel in India. Factors like inter-fuel substitution by CNG, environmental concerns, economic outlook and price sensitivity must be incorporated in the demand estimation model. Differential subsidy in India on diesel and petrol affects its demand and the choice of vehicle ownership. A self designed questionnaire is used to survey and identify the factors affecting the demand for petrol and diesel. Multiple regression models are formulated for demand estimation of petrol and diesel with principal factors. Models are validated with real time data

    Inborn errors of thymic stromal cell development and function

    Get PDF
    As the primary site for T cell development, the thymus is responsible for the production and selection of a functional, yet self-tolerant T cell repertoire. This critically depends on thymic stromal cells, derived from the pharyngeal apparatus during embryogenesis. Thymic epithelial cells, mesenchymal and vascular elements together form the unique and highly specialised microenvironment required to support all aspects of thymopoiesis and T cell central tolerance induction. Although rare, inborn errors of thymic stromal cells constitute a clinically important group of conditions because their immunological consequences, which include autoimmune disease and T cell immunodeficiency, can be life-threatening if unrecognised and untreated. In this review, we describe the molecular and environmental aetiologies of the thymic stromal cell defects known to cause disease in humans, placing particular emphasis on those with a propensity to cause thymic hypoplasia or aplasia and consequently severe congenital immunodeficiency. We discuss the principles underpinning their diagnosis and management, including the use of novel tools to aid in their identification and strategies for curative treatment, principally transplantation of allogeneic thymus tissue

    Elevated levels of protein phosphatase 1 and phosphatase 2A may contribute to cardiac dysfunction in diabetes

    Get PDF
    AbstractAlthough protein phosphorylation and dephosphorylation are known to regulate the activities of different enzymes, sufficient information on the role of dephosphorylation in cardiac function is not available. Since protein phosphatases mediate dephosphorylation, it is possible that cardiac dysfunction induced by diabetes may be due to alterations in the activities of these enzymes. We therefore determined cardiac protein phosphatase activity as well as protein contents of phosphatase 1 and phosphatase 2A in diabetic animals. For this purpose, rats were made diabetic by administering a single intravenous injection of streptozotocin (65 mg/kg body weight) and hearts were examined after 1, 2, 3, 4 and 8 weeks. Some of the 4-week diabetic animals received subcutaneous injections of insulin (3 U/day) for a further period of 4 weeks. Cardiac dysfunction was evident after 2 weeks of inducing diabetes and deteriorated further with time. A significant increase in protein phosphatase activity appeared after 1 week and persisted until 8 weeks. Increased protein phosphatase activity in the diabetic heart was associated with a corresponding increase in the protein contents of both phosphatase 1 and phosphatase 2A. Insulin treatment partly prevented the changes observed in diabetic animals. The results suggest that increased protein phosphatase activities and subsequent enhanced protein dephosphorylation may play a role in diabetes-induced cardiac dysfunction

    Long Covid symptoms and diagnosis in primary care: A cohort study using structured and unstructured data in The Health Improvement Network primary care database

    Get PDF
    BACKGROUND: Long Covid is a widely recognised consequence of COVID-19 infection, but little is known about the burden of symptoms that patients present with in primary care, as these are typically recorded only in free text clinical notes. AIMS: To compare symptoms in patients with and without a history of COVID-19, and investigate symptoms associated with a Long Covid diagnosis. METHODS: We used primary care electronic health record data until the end of December 2020 from The Health Improvement Network (THIN), a Cegedim database. We included adults registered with participating practices in England, Scotland or Wales. We extracted information about 89 symptoms and 'Long Covid' diagnoses from free text using natural language processing. We calculated hazard ratios (adjusted for age, sex, baseline medical conditions and prior symptoms) for each symptom from 12 weeks after the COVID-19 diagnosis. RESULTS: We compared 11,015 patients with confirmed COVID-19 and 18,098 unexposed controls. Only 20% of symptom records were coded, with 80% in free text. A wide range of symptoms were associated with COVID-19 at least 12 weeks post-infection, with strongest associations for fatigue (adjusted hazard ratio (aHR) 3.46, 95% confidence interval (CI) 2.87, 4.17), shortness of breath (aHR 2.89, 95% CI 2.48, 3.36), palpitations (aHR 2.59, 95% CI 1.86, 3.60), and phlegm (aHR 2.43, 95% CI 1.65, 3.59). However, a limited subset of symptoms were recorded within 7 days prior to a Long Covid diagnosis in more than 20% of cases: shortness of breath, chest pain, pain, fatigue, cough, and anxiety / depression. CONCLUSIONS: Numerous symptoms are reported to primary care at least 12 weeks after COVID-19 infection, but only a subset are commonly associated with a GP diagnosis of Long Covid

    Interplay of Oxidative Stress and Necrosis-like Cell Death in Cardiac Ischemia/Reperfusion Injury:A Focus on Necroptosis

    Get PDF
    Extensive research work has been carried out to define the exact significance and contribution of regulated necrosis-like cell death program, such as necroptosis to cardiac ischemic injury. This cell damaging process plays a critical role in the pathomechanisms of myocardial infarction (MI) and post-infarction heart failure (HF). Accordingly, it has been documented that the modulation of key molecules of the canonical signaling pathway of necroptosis, involving receptor-interacting protein kinases (RIP1 and RIP3) as well as mixed lineage kinase domain-like pseudokinase (MLKL), elicit cardioprotective effects. This is evidenced by the reduction of the MI-induced infarct size, alleviation of myocardial dysfunction, and adverse cardiac remodeling. In addition to this molecular signaling of necroptosis, the non-canonical pathway, involving Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-mediated regulation of mitochondrial permeability transition pore (mPTP) opening, and phosphoglycerate mutase 5 (PGAM5)–dynamin-related protein 1 (Drp-1)-induced mitochondrial fission, has recently been linked to ischemic heart injury. Since MI and HF are characterized by an imbalance between reactive oxygen species production and degradation as well as the occurrence of necroptosis in the heart, it is likely that oxidative stress (OS) may be involved in the mechanisms of this cell death program for inducing cardiac damage. In this review, therefore, several observations from different studies are presented to support this paradigm linking cardiac OS, the canonical and non-canonical pathways of necroptosis, and ischemia-induced injury. It is concluded that a multiple therapeutic approach targeting some specific changes in OS and necroptosis may be beneficial in improving the treatment of ischemic heart disease
    corecore