29 research outputs found
Controlling intense, ultrashort, laser-driven relativistic mega-ampere electron fluxes by a modest, static magnetic field
The guiding and control of ultrahigh flux, femtosecond relativistic electron
pulses through solid density matter is of great importance for many areas of
high energy density science. Efforts so far include the use of magnetic fields
generated by the propagation of the electron pulse itself or the application of
hundreds of Tesla magnitudes, pulsed external magnetic fields driven by either
short pulse lasers or electrical pulses. Here we experimentally demonstrate the
guiding of hundreds of keV mega-ampere electron pulses in a magnetized
neodymium solid that has a very modest, easily available static field of 0.1
tesla. The electron pulses driven by an ultrahigh intensity, 30 femtosecond
laser are shown to propagate beam-like, a distance as large as 5 mm in a high Z
target (neodymium), their collimation improved and flux density enhanced nearly
by a factor of 3. Particle-in-cell simulations in the appropriate parameter
regime match the experimental observations. In addition, the simulations
predict the occurrence of a novel, near-monochromatic feature towards the high
energy end of the electron energy spectrum, which is tunable by the applied
magnetic field strength. These results may prove valuable for fast electron
beam-driven radiation sources, fast ignition of laser fusion, and laboratory
astrophysics.Comment: 10 pages, 5 figure
Results of a Zika Virus (ZIKV) Immunoglobulin M-Specific Diagnostic Assay Are Highly Correlated With Detection of Neutralizing Anti-ZIKV Antibodies in Neonates With Congenital Disease.
BACKGROUND:  Usually, immunoglobulin M (IgM) serologic analysis is not sufficiently specific to confirm Zika virus (ZIKV) infection. However, since IgM does not cross the placenta, it may be a good marker of infection in neonates. METHODS:  We tested blood from 42 mothers and neonates with microcephaly and collected cerebrospinal fluid (CSF) specimens from 30 neonates. Molecular assays were performed for detection of ZIKV, dengue virus, and chikungunya virus; IgM enzyme-linked immunosorbent assays and plaque-reduction neutralization tests (PRNTs) were performed to detect ZIKV and dengue virus. No control neonates without microcephaly were evaluated. RESULTS:  Among neonates, all 42 tested positive for ZIKV IgM: 38 of 42 serum specimens (90.5%) were positive, whereas 30 of 30 CSF specimens (100%) were positive. ZIKV IgM-specific ELISA ratios, calculated as the mean optical density (OD) of the test sample when reacted on viral antigen divided by the mean OD of the negative control when reacted with viral antigen, were higher in CSF specimens (median, 14.9 [range, 9.3-16.4]) than in serum (median, 8.9 [range, 2.1-20.6]; P = .0003). All ZIKV IgM-positive results among the neonates were confirmed by the detection of neutralizing antibodies. Mother/neonate pairs with primary ZIKV infection had neutralizing antibodies to ZIKV only, and mother/neonate pairs with ZIKV virus infection secondary to infection with another flavivirus had high titers of neutralizing antibodies to ZIKV. Among secondary infections, median titers in serum were 2072 (range, 232-12 980) for mothers and 2730 (range, 398-12 980) for neonates (P < .0001), and the median titer in CSF was 93 (range, 40-578) among neonates (P < .0001). CONCLUSIONS:  Among neonates, detection of ZIKV IgM in serum is confirmatory of congenital ZIKV infection, and detection of ZIKV IgM in CSF is confirmatory of neurologic infection. Therefore, we recommend testing for ZIKV IgM in neonates suspected of having congenital ZIKV infection and performance of PRNTs in equivocal cases
Seasonality of Leaf and Fig Production in Ficus squamosa, a Fig Tree with Seeds Dispersed by Water
The phenology of plants reflects selection generated by seasonal climatic factors and interactions with other plants and animals, within constraints imposed by their phylogenetic history. Fig trees (Ficus) need to produce figs year-round to support their short-lived fig wasp pollinators, but this requirement is partially de-coupled in dioecious species, where female trees only develop seeds, not pollinator offspring. This allows female trees to concentrate seed production at more favorable times of the year. Ficus squamosa is a riparian species whose dispersal is mainly by water, rather than animals. Seeds can float and travel in long distances. We recorded the leaf and reproductive phenology of 174 individuals for three years in Chiang Mai, Northern Thailand. New leaves were produced throughout the year. Fig production occurred year-round, but with large seasonal variations that correlated with temperature and rainfall. Female and male trees initiated maximal fig crops at different times, with production in female trees confined mainly to the rainy season and male figs concentrating fig production in the preceding months, but also often bearing figs continually. Ficus squamosa concentrates seed production by female plants at times when water levels are high, favouring dispersal by water, and asynchronous flowering within male trees allow fig wasps to cycle there, providing them with potential benefits by maintaining pollinators for times when female figs become available to pollinate
Zika-related adverse outcomes in a cohort of pregnant women with rash in Pernambuco, Brazil.
BACKGROUND: While Zika virus (ZIKV) is now widely recognized as a teratogen, the frequency and full spectrum of adverse outcomes of congenital ZIKV infection remains incompletely understood. METHODS: Participants in the MERG cohort of pregnant women with rash, recruited from the surveillance system from December/2015-June/2017. Exposure definition was based on a combination of longitudinal data from molecular, serologic (IgM and IgG3) and plaque reduction neutralization tests for ZIKV. Children were evaluated by a team of clinical specialists and by transfontanelle ultrasound and were classified as having microcephaly and/or other signs/symptoms consistent with congenital Zika syndrome (CZS). Risks of adverse outcomes were quantified according to the relative evidence of a ZIKV infection in pregnancy. FINDINGS: 376 women had confirmed and suspected exposure to ZIKV. Among evaluable children born to these mothers, 20% presented with an adverse outcome compatible with exposure to ZIKV during pregnancy. The absolute risk of microcephaly was 2.9% (11/376), of calcifications and/or ventriculomegaly was 7.2% (13/180), of additional neurologic alterations was 5.3% (13/245), of ophthalmologic abnormalities was 7% (15/214), and of dysphagia was 1.8% (4/226). Less than 1% of the children experienced abnormalities across all of the domains simultaneously. Interpretation: Although approximately one-fifth of children with confirmed and suspected exposure to ZIKV in pregnancy presented with at least one abnormality compatible with CZS, the manifestations presented more frequently in isolation than in combination. Due to the rare nature of some outcomes and the possibility of later manifestations, large scale individual participant data meta-analysis and the long-term evaluation of children are imperative to identify the full spectrum of this syndrome and to plan actions to reduce damages
Establishment and cryptic transmission of Zika virus in Brazil and the Americas
Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil1. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 20162) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 20162). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease3. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus