311 research outputs found

    Influence of Ni doping on the electronic structure of Ni_2MnGa

    Full text link
    The modifications in the electronic structure of Ni_{2+x}Mn_{1-x}Ga by Ni doping have been studied using full potential linearized augmented plane wave method and ultra-violet photoemission spectroscopy. Ni 3d related electron states appear due to formation of Ni clusters. We show the possibility of changing the minority-spin DOS with Ni doping, while the majority-spin DOS remains almost unchanged. The total magnetic moment decreases with excess Ni. The total energy calculations corroborate the experimentally reported changes in the Curie temperature and the martensitic transition temperature with x.Comment: 4 pages, 4 figures, accepted in Phys. Rev.

    Effect of growth and yield parameters on Indian-mustard genotypes under varying environmental conditions in western Haryana

    Get PDF
    An experiment was conducted in Rabi season of year 2014-15 at Research Farm, Department of Agril. Meteorology, CCSHAU Hisar, Haryana and field area was adjacent to agrometeorological observatory at 290 10' N latitude, 750 46' E longitude and altitude of 215.2 m with Split Plot Design as main plot treatments consisted of three date of sowing viz.26thOctober, 5thNovember, and 15th November and sub-plots consisted of three varieties (Kranti, RH 406 and RH 0749) with four replications. Various growth and yield parameters such as plant height, LAI, dry matter accumulation, partitioning and yield attributes were higher in 26thOctober sown crop as compared to 5th and 15th November at all the growth intervals. The crop sown on 26th October (1870.3 kg/ha) produced highest seed yield as compared to 5th (1525.5 kg/ha) and 15th November (1099.8 kg/ha). Among varieties, RH0749 recorded highest seed yield because LAI, biomass accumulates were performed better as compared to RH 406 and Kranti. There was significant interaction between growing environment and varieties with respect to growth and yield parameters. From the above study it was concluded that normal or early sowing of Indian mustard may be practisized for achieving higher seed yield and improved growth and yield attributes in western Haryana conditions

    Surface stress and lattice dynamics in oxide ultrathin films

    Get PDF
    The lattice misfit between the substrate and an epitaxial film leads in general to static forces, which define the interface stress, and dynamic responses that modify the thin-film lattice dynamics. Although these are both fundamental concepts that are important for film growth and thin-film properties, they have not been investigated in a combined way so far. Therefore, herein, surface stress experiments in combination with surface phonon studies for three different, cubic oxide ultrathin film systems are reviewed. Within the class of binary oxides, NiO(001) grown on Ag(001) is chosen, which exhibits a -2.2% lattice mismatch, and BaO(001) on Pt(001), a system with a negligible lattice mismatch. For the ternary oxides, perovskite thin films of BaTiO3 grown epitaxially on Pt(001) with a lattice mismatch of -2.3% are focused upon. The surface stress experiments are conducted with an optical two-beam curvature technique under in situ growth conditions. Surface and thin-film phonons are determined by high-resolution electron energy loss spectroscopy. Surface stress and lattice dynamics are discussed in the range from the oxide monolayer to thin films of about 20 unit cell in thickness

    Recent approaches in nitrogen management for sustainable agricultural production and eco-safety

    Get PDF
    Among plant nutrients, nitrogen (N) is the most important. Its importance as a growth- and yield-determining nutrient has led to large and rapid increases in N application rates, but often with poor use efficiency. Nitrogen management requires special attention in its use so that the large losses can be minimized and the efficiency maximized. Site-specific nutrient management (SSNM) has been found especially useful to achieve the goals of improved productivity and higher N use efficiency (NUE). Leaf color charts and chlorophyll meters assist in the prediction of crop N needs for rice and wheat, leading to greater N-fertilizer efficiency at various yield levels. Crop simulation models can be used in combination with field information and actual weather data to make recommendations to achieve higher NUE. Remote sensing tools are also used to predict crop N demands precisely. At the same time, traditional techniques like balanced fertilization, integrated N management (INM), use of nitrification inhibitors and slow-release nitrogenous fertilizers (SRNF), split application and nutrient budgeting, among others, are also used to supplement recent N management techniques to attain higher productivity and NUE, and reduce environmental pollution through the leakage of fertilizer N

    Mesoscale convection system and occurrence of extreme low tropopause temperatures: observations over Asian summer monsoon region

    Get PDF
    The present study examines the process of how tropospheric air enters the stratosphere, particularly in association with tropical mesoscale convective systems (TMCS) which are considered to be one of the causative mechanisms for the observation of extremely low tropopause temperature over the tropics. The association between the phenomena of convection and the observation of extreme low tropopause temperature events is, therefore, examined over the Asian monsoon region using data from multiple platforms. Satellite observations show that the area of low outgoing long wave radiation (OLR), which is a proxy for the enhanced convection, is embedded with high altitude clouds top temperatures (&le;193 K). A detailed analysis of OLR and 100 hPa temperature shows that both are modulated by westward propagating Rossby waves with a period of ~15 days, indicating a close linkage between them. The process by which the tropospheric air enters the stratosphere may, in turn, be determined by how the areas of convection and low tropopause temperature (LTT) i.e. <I>T</I>&le;191 K are spatially located. In this context, the relative spatial distribution of low OLR and LTT areas is examined. Though, the locations of low OLR and LTT are noticed in the same broad area, the two do not always overlap, except for partial overlap in some cases. When there are multiple low OLR areas, the LTT area generally appears in between the low OLR areas. Implications of these observations are also discussed. The present analysis also shows that the horizontal mean winds have a role in the spatial distribution of low OLR and LTT

    Ba{1-x}KxMn2As2: An Antiferromagnetic Local-Moment Metal

    Full text link
    The compound BaMn2As2 with the tetragonal ThCr2Si2 structure is a local-moment antiferromagnetic insulator with a Neel temperature TN = 625 K and a large ordered moment mu = 3.9 mu_B/Mn. We demonstrate that this compound can be driven metallic by partial substitution of Ba by K, while retaining the same crystal and antiferromagnetic structures together with nearly the same high TN and large mu. Ba_{1-x}K_xMn2As2 is thus the first metallic ThCr2Si2-type MAs-based system containing local 3d transition metal M magnetic moments, with consequences for the ongoing debate about the local moment versus itinerant pictures of the FeAs-based superconductors and parent compounds. The Ba_{1-x}K_xMn2As2 class of compounds also forms a bridge between the layered iron pnictides and cuprates and may be useful to test theories of high Tc superconductivity.Comment: 5 two-column typeset pages, 5 figures, 20 references; v2: minor revisions, 4 new references, published versio

    Direct observation of the spin texture in strongly correlated SmB6 as evidence of the topological Kondo insulator

    Full text link
    The concept of a topological Kondo insulator (TKI) has been brought forward as a new class of topological insulators in which non-trivial surface states reside in the bulk Kondo band gap at low temperature due to the strong spin-orbit coupling [1-3]. In contrast to other three-dimensional (3D) topological insulators (e.g. Bi2Se3), a TKI is truly insulating in the bulk [4]. Furthermore, strong electron correlations are present in the system, which may interact with the novel topological phase. Applying spin- and angle-resolved photoemission spectroscopy (SARPES) to the Kondo insulator SmB6, a promising TKI candidate, we reveal that the surface states of SmB6 are spin polarized, and the spin is locked to the crystal momentum. Counter-propagating states (i.e. at k and -k) have opposite spin polarizations protected by time-reversal symmetry. Together with the odd number of Fermi surfaces of surface states between the 4 time-reversal invariant momenta in the surface Brillouin zone [5], these findings prove, for the first time, that SmB6 can host non-trivial topological surface states in a full insulating gap in the bulk stemming from the Kondo effect. Hence our experimental results establish that SmB6 is the first realization of a 3D TKI. It can also serve as an ideal platform for the systematic study of the interplay between novel topological quantum states with emergent effects and competing order induced by strongly correlated electrons.Comment: 4 figure
    • …
    corecore