68 research outputs found

    Annealing of radiation induced defects in silicon in a simplified phenomenological model

    Get PDF
    The concentration of primary radiation induced defects has been previously estimated considering both the explicit mechanisms of the primary interaction between the incoming particle and the nuclei of the semiconductor lattice, and the recoil energy partition between ionisation and displacements, in the frame of the Lindhard theory. The primary displacement defects are vacancies and interstitials, that are essentially unstable in silicon. They interact via migration, recombination, annihilation or produce other defects. In the present work, the time evolution of the concentration of defects induced by pions in medium and high resistivity silicon for detectors is modelled, after irradiation. In some approximations, the differential equations representing the time evolution processes could be decoupled. The theoretical equations so obtained are solved analytically in some particular cases, with one free parameter, for a wide range of particle fluences and/or for a wide energy range of the incident particles, for different temperatures; the corresponding stationary solutions are also presented.Comment: 14 pages, 5 figures, accepted to Nuclear Instruments and Methods in Physics Research B second version, major revisio

    Metal Concentrations in Soil Paste Extracts as Affected by Extraction Ratio

    Get PDF
    Saturated paste extracts are sometimes used to estimate metal levels in the soil solution. To assess the significance of heavy-metal concentrations measured in saturation extracts, soil paste extracts were prepared with distilled water in amounts ranging from 60–200% of the moisture content at saturation. Trace metals behaved as if a small pool consistently was dissolved independent of the extraction ratio applied. Metal concentrations in the solution hence were not buffered by the solid phase, but the observed behaviour would allow the estimation of metal concentrations in the soil solution as a function of moisture content. The behaviour of iron and manganese suggested that some microbial reduction occurred. The intensity increased with increasing extraction ratio but not to the extent of affecting dissolution of trace elements

    Study of Mechanical Disturbances in Superconducting Magnets using Piezoelectric Sensors and Quench Antenna

    Get PDF
    Mechanical disturbances in superconducting magnets were studied by recording and characterising the signals induced in piezo-electric ceramic sensors (piezos) and accelerometers by spontaneous acoustic emission (AE) during magnet excitation. The localisation of AE sources as recorded by the piezos corresponds to the localisation obtained by another, indirect technique, the so-called Quench Antenna. Dominant acoustic wave velocities along the magnet were measured by using selected piezos as active actuators. A mechanical disturbance energy calibration is shown and a way to estimate the minimum energy needed for quenching is proposed. A statistical approach is given in order to estimate the most probable amplitude of AE

    Experimental results on radiation-induced bulk damage effects in float-zone and epitaxial silicon detectors

    Get PDF
    A comparative study of the radiation hardness of silicon pad detectors, manufactured from Float-Zone and Epitaxial n-type monocrystals and irradiated with protons and neutrons up to a fluence of 3.5 1014 cm-2 is presented. The results are compared in terms of their reverse current, depletion voltage, and charge collection as a function of fluence during irradiation and as a function of time after irradiation

    Study of charge collection and noise in non-irradiated and irradiated silicon detectors

    Get PDF
    The large collection and noise were studied in non-irradiated and irradiated silicon detectors as a function of temperature (T), shaping time (0) and fluence , up to about 1,2 x 10(14) protons per cm2 for minimum-ionizing electrons yielded by a 106 Ru source. The noise of irradiated detectors is found to be dominted for short shaping times (¾50ns) by a series noise compo- nent, while for longer shaping times (80ns) a parallel noise component (correlated with the reverse current) prevails. For non-irradiated detectors, where the reverse current is three orders of magnetude smaller compared with irradiated detectors, the series noises dominates over the whole range of shaping times investigated (20-150ns). A signal degradation is observed for irradiated detectors. However, the signal ca be distinguished from noise, even after a fluence of about 1.2 x10(14) protons per cm2, at a temperature of 6øC and with a shaping time tipical of rge LHC inter-bunch crossing time (20-30ns). The measurements of the signal as a function of voltage shows that irradiated detectors depleted at 50% of the full depletion voltage can still provide a measurable signal-to-noise ratio

    Continuous grid monitoring to optimize sedimentation management

    Get PDF
    Fluves and GTC monitor since November 2015 continuously a sediment trap with dimensions 200 x 20 meters managed by the Flemish Environmental Agency (VMM) in Belgium. The continuous follow-up of sedimentation of the trap provides insights on temporal and spatial evolution of trapping efficiency. VMM will use the insights to optimize operational dredging decisions and for optimizing the design of future traps. The installed measuring system is based on distributed temperature sensing with a fiber optic cable of more than 2 km. A digital terrain model (DTM) of the sediment trap is transmitted to the client on a hourly to daily basis. Results after winter floods from November 2015 till February 2016 show a significant spatial variation in sedimentation through the sedimentation trap. Also, zones with different temporal evolution of filling of the trap could be observed. The technique shows great potential for detailed spatial and temporal observation of sedimentation processes in large areas, as well as the ability to detect thin sedimentation layers

    Metal concentrations in soil paste extracts as affected by extraction ratio.

    No full text
    Saturated paste extracts are sometimes used to estimate metal levels in the soil solution. To assess the significance of heavy-metal concentrations measured in saturation extracts, soil paste extracts were prepared with distilled water in amounts ranging from 60–200% of the moisture content at saturation. Trace metals behaved as if a small pool consistently was dissolved independent of the extraction ratio applied. Metal concentrations in the solution hence were not buffered by the solid phase, but the observed behaviour would allow the estimation of metal concentrations in the soil solution as a function of moisture content. The behaviour of iron and manganese suggested that some microbial reduction occurred. The intensity increased with increasing extraction ratio but not to the extent of affecting dissolution of trace elements
    • …
    corecore