89 research outputs found

    Characterization of a cinnamoyl-CoA reductase gene in Ginkgo biloba: Effects on lignification and environmental stresses

    Get PDF
    Cinnamoyl-CoA reductase (CCR, EC 1.2.1.44) catalyzes key steps in the biosynthesis of monolignols, which serve as building blocks in the formation of plant lignin. The full-length cDNA of GbCCR is 1178 bp and contains a 972 bp open reading frame (ORF) encoding a 323 amino acid protein. The deduced GbCCR protein showed high identities with other plant CCRs, and had closer relationship with Picea abies, sharing 56.3% homology. They both contain a common signature which is thought to be involved in the catalytic site of CCR. Phylogenetic tree analysis revealed that GbCCR shared the same ancestor with other CCRs, but the divergence time is early. Southern blot analysis indicated that GbCCR belonged to a multi-gene family. The expression analysis by quantitative real-time polymerase chain reaction (QRT-PCR showed that GbCCR was seen in a tissue specific manner in Ginkgo biloba; it had the highest expression in injured stems, and a high expression in four years old stems, while it had the lowest in endosperm. GbCCR was also found to be significantly up-regulated by gibberellin (GA), but the expression was weakly induced by Agrobacterium treatment. QRT-PCR analysis showed that GbCCR activity correlated with changes in transcription level of the GbCCR gene, and GbCCR activity was also positively correlated with total lignin accumulation in developments of Ginkgo stem. In light of these properties and expression pattern, we suggested that the corresponding enzyme is probably involved in constitutive lignification and defense.Key words: Ginkgo biloba L., GbCCR, gene expression, lignification, defense

    Multi-normal-mode splitting of a cavity in the presence of atoms -- towards the superstrong coupling regime

    Full text link
    Multi-normal-mode splitting peaks are experimentally observed in a system with Doppler-broadened two-level atoms inside a relatively long optical cavity. In this system, the atoms-cavity interaction can reach the ``superstrong coupling" condition with atoms-cavity coupling strength gNg\sqrt{N} to be near or larger than the cavity free-spectral range ΔFSR\Delta_{FSR}. In such case, normal-mode splitting can occur in many cavity longitudinal modes to generate the multi-normal-mode splitting peaks, which can be well explained by the linear dispersion enhancement due to the largely increased atomic density in the cavity. Many new interesting phenomena might come out of this superstrong atoms-cavity coupling regime.Comment: 4 pages, 5 figures. appear in Phys. Rev.

    The importance of the Indo-Pacific humpback dolphin (<i>Sousa chinesis</i>) population of Sanniang bay, Guangxi Province, PR China: recommendations for habitat protection. Scientific Committee Document SC/58/SM18, International Whaling Commission, May-June 2006, St.Kitts

    Get PDF
    During the period June 2004 - January 2006, a research team from the Qinzhou Bay Chinese White Dolphins Research Center of Peking University, the Peoples Republic of China, conducted systematic and opportunistic boat surveys of Sanniang Bay, Guangxi Province, in which Indo-Pacific humpback dolphins Sousa chinensis were regularly seen. Ninety eight dolphins were photographically identified. The dolphins appear to inhabit a small, shallow area of core habitat within the greater Sanniang Bay area. They do not appear to travel up the two rivers which are located to each side of the bay. Of the five populations known from the coastal area of China, the one that resides in Sanniang Bay is determined as having the least impact from anthropogenic activities. The area itself has been designated as a nature tourism location and considerable effort and money has been spent on developing appropriate tourist facilities. The dolphin watching industry in the area is strictly monitored and controlled by one local authority. The largest estuary adjacent to Sanniang Bay has been allocated for industrial development and a paper pulp mill will be established there. Considering the investment already made in the nature tourism industry, the natural beauty of the bay and the surrounding area and the likelihood that this is the only population of Indo-Pacific humpback dolphins which remain in uncompromised and relatively pristine habitat in all of China, it is urged that all effort be made to maintain the natural integrity of the bay. It is recommended that all development and operational aspects of the paper pulp be thoroughly scrutinized and all efforts made to minimize impact upon the environment and that all current and future industries and activities in this area must not detrimentally impact the dolphin population or compromise the integrity of the bay ecosystem

    AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To complement next-generation sequencing technologies, there is a pressing need for efficient pre-sequencing capture methods with reduced costs and DNA requirement. The Alu family of short interspersed nucleotide elements is the most abundant type of transposable elements in the human genome and a recognized source of genome instability. With over one million Alu elements distributed throughout the genome, they are well positioned to facilitate genome-wide sequence amplification and capture of regions likely to harbor genetic variation hotspots of biological relevance.</p> <p>Results</p> <p>Here we report on the use of inter-Alu PCR with an enhanced range of amplicons in conjunction with next-generation sequencing to generate an Alu-anchored scan, or 'AluScan', of DNA sequences between Alu transposons, where Alu consensus sequence-based 'H-type' PCR primers that elongate outward from the head of an Alu element are combined with 'T-type' primers elongating from the poly-A containing tail to achieve huge amplicon range. To illustrate the method, glioma DNA was compared with white blood cell control DNA of the same patient by means of AluScan. The over 10 Mb sequences obtained, derived from more than 8,000 genes spread over all the chromosomes, revealed a highly reproducible capture of genomic sequences enriched in genic sequences and cancer candidate gene regions. Requiring only sub-micrograms of sample DNA, the power of AluScan as a discovery tool for genetic variations was demonstrated by the identification of 357 instances of loss of heterozygosity, 341 somatic indels, 274 somatic SNVs, and seven potential somatic SNV hotspots between control and glioma DNA.</p> <p>Conclusions</p> <p>AluScan, implemented with just a small number of H-type and T-type inter-Alu PCR primers, provides an effective capture of a diversity of genome-wide sequences for analysis. The method, by enabling an examination of gene-enriched regions containing exons, introns, and intergenic sequences with modest capture and sequencing costs, computation workload and DNA sample requirement is particularly well suited for accelerating the discovery of somatic mutations, as well as analysis of disease-predisposing germline polymorphisms, by making possible the comparative genome-wide scanning of DNA sequences from large human cohorts.</p

    Complete genome sequence of methicillin-sensitive Staphylococcus aureus containing a heterogeneic staphylococcal cassette chromosome element

    Get PDF
    Staphylococcus aureus is a common human bacterium that sometimes becomes pathogenic, causing serious infections. A key feature of S. aureus is its ability to acquire resistance to antibiotics. The presence of the staphylococcal cassette chromosome (SCC) element in serotypes of S. aureus has been confirmed using multiplex PCR assays. The SCC element is the only vector known to carry the mecA gene, which encodes methicillin resistance in S. aureus infections. Here, we report the genome sequence of a novel methicillin-sensitive S. aureus (MSSA) strain: SCC-like MSSA463. This strain was originally erroneously serotyped as methicillin-resistant S. aureus in a clinical laboratory using multiplex PCR methods. We sequenced the genome of SCC-like MSSA463 using pyrosequencing techniques and compared it with known genome sequences of other S. aureus isolates. An open reading frame (CZ049; AB037671) was identified downstream of attL and attR inverted repeat sequences. Our results suggest that a lateral gene transfer occurred between S. aureus and other organisms, partially changing S. aureus infectivity. We propose that attL and attR inverted repeats in S. aureus serve as frequent insertion sites for exogenous genes.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000316747000011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701BiologySCI(E)PubMed0ARTICLE3268-2745

    Identification of a Phytase Gene in Barley (Hordeum vulgare L.)

    Get PDF
    Background: Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. Methodology/Principal Findings: Quantitative trait loci (QTL) analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP) gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. Conclusions/Significance: It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains

    Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity

    Full text link
    The DNA methyltransferase Dnmt3a has high expression in terminally differentiated macrophages; however, its role in innate immunity remains unknown. Here we report that deficiency in Dnmt3a selectively impaired the production of type I interferons triggered by pattern-recognition receptors (PRRs), but not that of the proinflammatory cytokines TNF and IL-6. Dnmt3a-deficient mice exhibited enhanced susceptibility to viral challenge. Dnmt3a did not directly regulate the transcription of genes encoding type I interferons; instead, it increased the production of type I interferons through an epigenetic mechanism by maintaining high expression of the histone deacetylase HDAC9. In turn, HDAC9 directly maintained the deacetylation status of the key PRR signaling molecule TBK1 and enhanced its kinase activity. Our data add mechanistic insight into the crosstalk between epigenetic modifications and post-translational modifications in the regulation of PRR signaling and activation of antiviral innate immune responses

    Self-piercing riveting-a review

    Get PDF
    © The Author(s) 2017. This article is published with open access at Springerlink.com.Self-piercing riveting (SPR) is a cold mechanical joining process used to join two or more sheets of materials by driving a rivet piercing through the top sheet or the top and middle sheets and subsequently lock into the bottom sheet under the guidance of a suitable die. SPR is currently the main joining method for aluminium and mixed-material lightweight automotive structures. SPR was originated half century ago, but it only had significant progress in the last 25 years due to the requirement of joining lightweight materials, such as aluminium alloy structures, aluminium-steel structures and other mixed-material structures, from the automotive industry. Compared with other conventional joining methods, SPR has many advantages including no pre-drilled holes required, no fume, no spark and low noise, no surface treatment required, ability to join multi-layer materials and mixed materials and ability to produce joints with high static and fatigue strengths. In this paper, research investigations that have been conducted on self-piercing riveting will be extensively reviewed. The current state and development of SPR process is reviewed and the influence of the key process parameters on joint quality is discussed. The mechanical properties of SPR joints, the corrosion behaviour of SPR joints, the distortion of SPR joints and the simulation of SPR process and joint performance are reviewed. Developing reliable simulation methods for SPR process and joint performance to reduce the need of physical testing has been identified as one of the main challenges.Peer reviewe

    An innovative, highly efficient and expertise-free mechanism reduction method: important species identification through species? participation in element fluxes

    No full text
    10.1080/13647830.2021.1950838Combustion Theory and Modelling2505832-86
    corecore