26 research outputs found

    Forecasting of commercial sales with large scale Gaussian Processes

    Full text link
    This paper argues that there has not been enough discussion in the field of applications of Gaussian Process for the fast moving consumer goods industry. Yet, this technique can be important as it e.g., can provide automatic feature relevance determination and the posterior mean can unlock insights on the data. Significant challenges are the large size and high dimensionality of commercial data at a point of sale. The study reviews approaches in the Gaussian Processes modeling for large data sets, evaluates their performance on commercial sales and shows value of this type of models as a decision-making tool for management.Comment: 1o pages, 5 figure

    Expression of Placental Regulatory Genes Is Associated with Fetal Growth

    Full text link
    The placenta is the principal organ regulating respiratory, nutritional, endocrine and metabolic functions on behalf of the developing fetus. Changes in gene expression patterns of placenta-specific genes may influence fetal growth. We profiled the expression of 17 genes related to placenta functioning in term placentas (n=677) to identify genes differentially expressed across birth weight categories [small (SGA), appropriate (AGA) and large (LGA) for gestational age]. ABCG2, CEBPB, CRH, GCM1, GPC3, INSL4, PGF and PLAC1 were inversely associated with LGA status, with odds ratios (ORs) and 95% confidence intervals (CI) ranging from GCM1 (OR=0.44, 95% CI: 0.29, 0.70) to CRH (OR=0.73, 95% CI: 0.61, 0.88). NR3C1 was positively associated with LGA status (OR=2.33, 95% CI: 1.43, 3.78). PLAC1 (OR=0.66, 95% CI: 0.47, 0.92) and ABCG2 (OR=0.63, 95% CI: 0.44, 0.91) were additionally inversely associated with SGA status, and PGF was positively associated with SGA status (OR=1.59, 95% CI=1.08, 2.35). General trends were confirmed in an independent cohort (n=306). Given that aberrant fetal growth may have long-lasting effects, our results suggest the potential utility of placental gene expression profiles as potential early markers of disease onset later in life

    Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth

    Get PDF
    Maternal smoking during pregnancy (MSDP) contributes to poor birth outcomes, in part through disrupted placental functions, which may be reflected in the placental epigenome. Here we present a meta-analysis of the associations between MSDP and placental DNA methylation (DNAm) and between DNAm and birth outcomes within the Pregnancy And Childhood Epigenetics (PACE) consortium (N = 1700, 344 with MSDP). We identify 443 CpGs that are associated with MSDP, of which 142 associated with birth outcomes, 40 associated with gene expression, and 13 CpGs are associated with all three. Only two CpGs have consistent associations from a prior meta-analysis of cord blood DNAm, demonstrating substantial tissue-specific responses to MSDP. The placental MSDP-associated CpGs are enriched for environmental response genes, growth-factor signaling, and inflammation, which play important roles in placental function. We demonstrate links between placental DNAm, MSDP and poor birth outcomes, which may better inform the mechanisms through which MSDP impacts placental function and fetal growth

    In-depth characterization of the placental imprintome reveals novel differentially methylated regions across birth weight categories

    No full text
    Imprinted genes play a pivotal role in placental processes underlying fetal development, and much interest centers on discerning whether these loci, via changes in DNA methylation and/or gene expression, inform disruptions in appropriate fetal growth. In this study, we comprehensively profiled DNA methylation across the placental imprintome and assessed the relationship with gene expression levels and aberrant fetal growth. Placental DNA methylation across 153 imprinted loci, including imprint control regions (ICR) and surrounding non-ICR regions, was surveyed using the Nimblegen TruSeq bisulfite sequencing platform among participants enrolled in the Rhode Island Child Health Study (RICHS, n = 163). Methylation and gene expression associations were assessed using eQTM analysis. Differential methylation analysis contrasting small (SGA) and large for gestational age (LGA) infants against appropriate for gestational age (AGA) infants was assessed using the DMRcate R package. We identified 34 SGA-related differentially methylated regions (DMRs) and 9 LGA-related DMRs (FDR<0.05), and these BW-DMRs predominated in promoter and intronic regions. We observed overall hypomethylation among SGA-DMRs overlapping maternally expressed (paternally imprinted) genes while no parent-of-origin effect was observed among LGA DMRs. Three BW-DMRs, mapping to GABRG3, IGF1R and MEST, were common to SGA and LGA placenta. We did not observe significant correlations between BW-DMR-associated CpG methylation and gene expression levels. We report the first in-depth characterization of the placental imprintome in a population-wide setting. Our findings reveal growth-related differences in methylation without concomitant expression differences in regions that extend beyond typically interrogated imprinted loci, highlighting potentially novel placental biomarkers of growth and development

    Whole-transcriptome analysis delineates the human placenta gene network and its associations with fetal growth

    No full text
    Abstract Background The placenta is the principal organ regulating intrauterine growth and development, performing critical functions on behalf of the developing fetus. The delineation of functional networks and pathways driving placental processes has the potential to provide key insight into intrauterine perturbations that result in adverse birth as well as later life health outcomes. Results We generated the transcriptome-wide profile of 200 term human placenta using the Illumina HiSeq 2500 platform and characterized the functional placental gene network using weighted gene coexpression network analysis (WGCNA). We identified 17 placental coexpression network modules that were dominated by functional processes including growth, organ development, gas exchange and immune response. Five network modules, enriched for processes including cellular respiration, amino acid transport, hormone signaling, histone modifications and gene expression, were associated with birth weight; hub genes of all five modules (CREB3, DDX3X, DNAJC14, GRHL1 and C21orf91) were significantly associated with fetal growth restriction, and one hub gene (CREB3) was additionally associated with fetal overgrowth. Conclusions In this largest RNA-Seq based transcriptome-wide profiling study of human term placenta conducted to date, we delineated a placental gene network with functional relevance to fetal growth using a network-based approach with superior scale reduction capacity. Our study findings not only implicate potential molecular mechanisms underlying fetal growth but also provide a reference placenta gene network to inform future studies investigating placental dysfunction as a route to future disease endpoints

    Differences in Placental Imprinted Gene Expression across Preeclamptic and Non-Preeclamptic Pregnancies

    No full text
    Preeclampsia is a multi-systemic syndrome that presents in approximately 5% of pregnancies worldwide and is associated with a range of subsequent postpartum and postnatal outcomes, including fetal growth restriction. As the placenta plays a critical role in the development of preeclampsia, surveying genomic features of the placenta, including expression of imprinted genes, may reveal molecular markers that can further refine subtypes to aid targeted disease management. In this study, we conducted a comprehensive survey of placental imprinted gene expression across early and late onset preeclampsia cases and preterm and term normotensive controls. Placentas were collected at delivery from women recruited at the Magee-Womens Hospital prenatal clinics, and expression levels were profiled across 109 imprinted genes. We observed downregulation of placental Mesoderm-specific transcript (MEST) and Necdin (NDN) gene expression levels (false discovery rate (FDR) < 0.05) among early onset preeclampsia cases compared to preterm controls. No differences in placental imprinted gene expression were observed between late onset preeclampsia cases and term controls. While few studies have linked NDN to pregnancy complications, reductions in MEST expression levels, as observed in our study, are consistently reported in the literature in relation to various pregnancy complications, including fetal growth restriction, suggesting a potential role for placental MEST expression as a biosensor of an adverse in utero environment

    Additional file 5: of Whole-transcriptome analysis delineates the human placenta gene network and its associations with fetal growth

    No full text
    Mapping of GWAS-linked genes in placental gene coexpression network. Genes linked to GWAS-associated traits that are enriched in the placental gene coexpression network are listed alongside assigned modules and GWAS-linked traits. (CSV 58 kb
    corecore