7,471 research outputs found

    Control of beam propagation in optically written waveguides beyond the paraxial approximation

    Full text link
    Beam propagation beyond the paraxial approximation is studied in an optically written waveguide structure. The waveguide structure that leads to diffractionless light propagation, is imprinted on a medium consisting of a five-level atomic vapor driven by an incoherent pump and two coherent spatially dependent control and plane-wave fields. We first study propagation in a single optically written waveguide, and find that the paraxial approximation does not provide an accurate description of the probe propagation. We then employ coherent control fields such that two parallel and one tilted Gaussian beams produce a branched waveguide structure. The tilted beam allows selective steering of the probe beam into different branches of the waveguide structure. The transmission of the probe beam for a particular branch can be improved by changing the width of the titled Gaussian control beam as well as the intensity of the spatially dependent incoherent pump field.Comment: 10 pages, 9 figure

    The role of the immune system in brain metastasis

    Get PDF
    Metastatic brain tumors are the most common brain tumors in adults. With numerous successful advancements in systemic treatment of most common cancer types, brain metastasis is becoming increasingly important in the overall prognosis of cancer patients. Brain metastasis of peripheral tumor is the result of complex interplay of primary tumor, immune system and central nervous system microenvironment. Once formed, brain metastases hide behind the blood brain barrier and become inaccessible to chemotherapies that are otherwise successful in targeting systemic cancer. The approval of immune checkpoint inhibitors for several common cancers such as advanced melanoma and lung cancers brings with it the opportunity and obligation to further understand the mechanisms of immunosuppression by tumors that spread to the brain as well as the interaction between the brain environment and tumor microenvironment. In this review paper we define the central role of the immune system in the development of brain metastases. We performed a comprehensive review of the literature to outline the molecular mechanisms of immunosuppression used by tumors and how the immune system interacts with the central nervous system to facilitate brain metastasis. In particular we discuss the tumor-type-specific mechanisms of metastasis of cancers that preferentially metastasize to the brain as well as the therapies that effectively modulate the immune response, such as immune checkpoint inhibitors and vaccines

    Born-Infeld black holes coupled to a massive scalar field

    Full text link
    Born-Infeld black holes in the Scalar-Tensor Theories of Gravity, in the case of massless scalar field, have been recently obtained. The aim of the current paper is to study the effect from the inclusion of a potential for the scalar field in the theory, through a combination of analytical techniques and numerical methods. The black holes coupled to a massive scalar field have richer causal structure in comparison to the massless scalar field case. In the latter case, the black holes may have a second, inner horizon. The presence of potential for the scalar field allows the existence of extremal black holes for certain values of the mass of the scalar field and the magnetic (electric) charge of the black hole. The linear stability against spherically symmetric perturbations is studied. Arguments in favor of the general stability of the solutions coming from the application of the "turning point" method are also presented.Comment: 26 pages, 16 figure

    Competition between Electromagnetically Induced Transparency and Raman Processes

    Get PDF
    We present a theoretical formulation of competition among electromagnetically induced transparency (EIT) and Raman processes. The latter become important when the medium can no longer be considered to be dilute. Unlike the standard formulation of EIT, we consider all fields applied and generated as interacting with both the transitions of the Λ\Lambda scheme. We solve Maxwell equations for the net generated field using a fast-Fourier-transform technique and obtain predictions for the probe, control and Raman fields. We show how the intensity of the probe field is depleted at higher atomic number densities due to the build up of multiple Raman fields.Comment: 3.5 pages, 7 figure

    Ultraslow light in inhomogeneously broadened media

    Get PDF
    We calculate the characteristics of ultraslow light in an inhomogeneously broadened medium. We present analytical and numerical results for the group delay as a function of power of the propagating pulse. We apply these results to explain the recently reported saturation behavior [Baldit {\it et al.}, \prl {\bf 95}, 143601 (2005)] of ultraslow light in rare earth ion doped crystal.Comment: 4 pages, 5 figure

    Optical cloning of arbitrary images beyond the diffraction limits

    Full text link
    Cloning of arbitrary images encoded onto the spatial profile of a laser beam onto that of a second beam is theoretically investigated. The two fields couple to an atomic lambda system in a coherent population trapping configuration. In particular, the case in which the probe and control fields are of comparable strength is considered. By considering more and more complex structures, we eventually find that our method is suitable to clone arbitrary images, which we demonstrated by a full numerical simulation of the propagation dynamics of both applied fields in the atomic medium, with the three letters "CPT" encoded on the initial control field profile. We find that the cloned structures have feature sizes reduced by about a factor of 2 compared to the initial images, consistent with a recent related experiment.Comment: 9 pages, 8 figure

    Coupled solitons in rare-earth doped two-mode fiber

    Get PDF
    We present first ever analytical solutions for shape-preserving pulses in a Kerr nonlinear two-mode fiber doped with 3-level Λatoms. The two modes are near-resonant with the two transitions of the atomic system. We show the existence of quasi-stable coupled bright-dark pairs if the group velocity dispersion has opposite signs at the two mode frequencies. We demonstrate the remarkable possibility allowed by the fiber dispersion for the existence of a new class of solutions for unequal coupling constants for the two modes. We present the conditions for existence and the analytical form of these solutions in presence of atomic detuning. We confirm numerically the analytical solutions for the spatio-temporal evolution of coupled solitary waves

    Phases of 4D Scalar-tensor black holes coupled to Born-Infeld nonlinear electrodynamics

    Full text link
    Recent results show that when non-linear electrodynamics is considered the no-scalar-hair theorems in the scalar-tensor theories (STT) of gravity, which are valid for the cases of neutral black holes and charged black holes in the Maxwell electrodynamics, can be circumvented. What is even more, in the present work, we find new non-unique, numerical solutions describing charged black holes coupled to non-linear electrodynamics in a special class of scalar-tensor theories. One of the phases has a trivial scalar field and coincides with the corresponding solution in General Relativity. The other four phases that we find are characterized by the value of the scalar field charge. The causal structure and some aspects of the stability of the solutions have also been studied. For the scalar-tensor theories considered, the black holes have a single, non-degenerate horizon, i.e., their causal structure resembles that of the Schwarzschild black hole. The thermodynamic analysis of the stability of the solutions indicates that a phase transition may occur.Comment: 18 pages, 8 figures, new phases, figures, clarifying remarks and acknowledgements adde
    • …
    corecore