11 research outputs found

    Thermoelectric response of a hot and weakly magnetized anisotropic QCD medium

    Full text link
    We have studied the Seebeck and Nernst coefficients of a weakly magnetized hot QCD medium having a weak momentum anisotropy within the kinetic theory approach. The thermal medium effects have been incorporated in the framework of a quasi-particle model where the medium dependent mass of the quark has been calculated using perturbative thermal QCD in the presence of a weak magnetic field which leads to different masses for the left (LL) and right (RR) handed chiral quark modes. We have found that the Seebeck and Nernst coefficient magnitudes for the individual quark flavors as well as for the composite medium are decreasing functions of temperature and decreasing functions of anisotropy strength. The Nernst coefficient magnitudes are about an order of magnitude smaller than their Seebeck counterparts, indicating the Seebeck effect constitutes a stronger response than the Nernst effect. The average percentage change corresponding to switching between quasiparticle modes (L→RL\to R or R→LR\to L) is an order of magnitude smaller for Nernst coefficients, compared to the Seebeck coefficients.Comment: 26 pages, 15 figure

    Odd Entanglement Entropy in TTˉ\bar{\text{T}} deformed CFT2_2s and Holography

    Full text link
    We construct a replica technique to perturbatively compute the odd entanglement entropy (OEE) for bipartite mixed states in TTˉ\bar{\text{T}} deformed CFT2_2s. This framework is then utilized to obtain the leading order correction to the OEE for two disjoint intervals, two adjacent intervals, and a single interval in TTˉ\bar{\text{T}} deformed thermal CFT2_2s in the large central charge limit. The field theory results are subsequently reproduced in the high temperature limit from holographic computations for the entanglement wedge cross sections in the dual bulk finite cut off BTZ geometries. We further show that for finite size TTˉ\bar{\text{T}} deformed CFT2_2s at zero temperature the corrections to the OEE are vanishing to the leading order from both the field theory and the bulk holographic computations.Comment: 30 pages, 3 figures, 2 appendice

    Shear viscosity of rotating, hot, and dense spin-half fermionic systems from quantum field theory

    Full text link
    In this study, we calculate the shear viscosity for rotating fermions with spin-half under conditions of high temperature and density. We employ the Kubo formalism, rooted in finite-temperature quantum field theory, to compute the field correlation functions essential for this evaluation. The one-loop diagram pertinent to shear viscosity is analyzed within the context of curved space, utilizing tetrad formalism as an effective approach in cylindrical coordinates. Our findings focus on extremely high angular velocities, ranging from 0.1 to 1 GeV, which align with experimental expectations. Furthermore, we explore the interrelationship between the chemical potential and angular velocity within the scope of this study.Comment: 14 pages, 4 figure

    Dynamics of Hot QCD Matter -- Current Status and Developments

    Full text link
    The discovery and characterization of hot and dense QCD matter, known as Quark Gluon Plasma (QGP), remains the most international collaborative effort and synergy between theorists and experimentalists in modern nuclear physics to date. The experimentalists around the world not only collect an unprecedented amount of data in heavy-ion collisions, at Relativistic Heavy Ion Collider (RHIC), at Brookhaven National Laboratory (BNL) in New York, USA, and the Large Hadron Collider (LHC), at CERN in Geneva, Switzerland but also analyze these data to unravel the mystery of this new phase of matter that filled a few microseconds old universe, just after the Big Bang. In the meantime, advancements in theoretical works and computing capability extend our wisdom about the hot-dense QCD matter and its dynamics through mathematical equations. The exchange of ideas between experimentalists and theoreticians is crucial for the progress of our knowledge. The motivation of this first conference named "HOT QCD Matter 2022" is to bring the community together to have a discourse on this topic. In this article, there are 36 sections discussing various topics in the field of relativistic heavy-ion collisions and related phenomena that cover a snapshot of the current experimental observations and theoretical progress. This article begins with the theoretical overview of relativistic spin-hydrodynamics in the presence of the external magnetic field, followed by the Lattice QCD results on heavy quarks in QGP, and finally, it ends with an overview of experiment results.Comment: Compilation of the contributions (148 pages) as presented in the `Hot QCD Matter 2022 conference', held from May 12 to 14, 2022, jointly organized by IIT Goa & Goa University, Goa, Indi

    Estimation of the Parameters of Skew Normal Distribution by Approximating the Ratio of the Normal Density and Distribution Functions

    No full text
    The normal distribution is symmetric and enjoys many important properties. That is why it is widely used in practice. Asymmetry in data is a situation where the normality assumption is not valid. Azzalini (1985) introduces the skew normal distribution reflecting varying degrees of skewness. The skew normal distribution is mathematically tractable and includes the normal distribution as a special case. It has three parameters: location, scale and shape. In this thesis we attempt to respond to the complexity and challenges in the maximum likelihood estimates of the three parameters of the skew normal distribution. The complexity is traced to the ratio of the normal density and distribution function in the likelihood equations in the presence of the skewness parameter. Solution to this problem is obtained by approximating this ratio by linear and non-linear functions. We observe that the linear approximation performs quite satisfactorily. In this thesis, we present a method of estimation of the parameters of the skew normal distribution based on this linear approximation. We define a performance measure to evaluate our approximation and estimation method based on it. We present the simulation studies to illustrate the methods and evaluate their performances

    A Phase II Study of BEZ235 in Patients with Everolimus-resistant, Advanced Pancreatic Neuroendocrine Tumours

    No full text
    BACKGROUND: This was a two-stage, phase II trial of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor BEZ235 in patients with everolimus-resistant pancreatic neuroendocrine tumours (pNETs) (NCT01658436). PATIENTS AND METHODS: In stage 1, 11 patients received 400 mg BEZ235 orally twice daily (bid). Due to tolerability concerns, a further 20 patients received BEZ235 300 mg bid. Stage 2 would be triggered by a 16-week progression-free survival (PFS) rate of ≥60% in stage 1. RESULTS: As of 30 June, 2014, 29/31 patients had discontinued treatment. Treatment-related grade 3/4 adverse events were reported in eight (72.7%) patients at 400 mg and eight (40.0%) patients at 300 mg, including hyperglycaemia, diarrhoea, nausea, and vomiting. The estimated 16-week PFS rate was 51.6% (90% confidence interval=35.7-67.3%). CONCLUSION: BEZ235 was poorly tolerated by patients with everolimus-resistant pNETs at 400 and 300 mg bid doses. Although evidence of disease stability was observed, the study did not proceed to stage 2.status: publishe
    corecore