78 research outputs found

    Alkaloid content and essential oil composition of Mahonia breviracema cultivated under different light environments

    Get PDF
    Light can affect the yields of alkaloid and essential oil in the synthesis of secondary metabolites directly or indirectly through plant growth. Despite Mahonia breviracema being an endemic medicinal species in China, research on the influence of light on production of alkaloid and essential oil is scarce. Thus, this research evaluated the influence of various lighting conditions on alkaloid yields and the composition and yields of the essential oils of M. breviracema. The results revealed significant differences in alkaloid yields, oil yieldsand chemical characteristics of M. breviracema grown in four different light intensities from 10 to 100% full sun shine. The total amount of alkaloids in plants under I30 and I50 was higher than that under I10 and I100 due to the higher biomass of plants. Oil yield of M. breviracema leaf increased linearly with the increase of lightincidence. Plants grown under I10 had less plastoglobuli, which coincided with the lowest oil yield (1.91 g kg-1). The plastoglobuli in chloroplasts increased when the irradiance levels increased, resulting in the highest oil yields under I100 (4.53 g kg-1). The principal components in the leaves of M. breviracema were hexadecanoic acid (10.54-72.19%) and α-ionone (1.25-42.39%). The highest hexadecanoic acid content was obtained under I50, followed by I30, and the highest α-ionone content was obtained under I100. Therefore, it is necessary to control the light environment to obtain raw materials with high quality

    A comparison of perceptual anticipation in combat sports between experts and non-experts: A systematic review and meta-analysis

    Get PDF
    In order to systematically evaluate perceptual anticipation between experts and non-experts for different kinds of combat sports, we needed to perform a comprehensive assessment. In this systematic review and meta-analysis, we searched four English-language and three Chinese-language databases that used expert/non-expert research paradigms, to explore perceptual anticipation in combat sports. We employed a random effects model for pooled analyses using the inverse variance method. We included 27 eligible studies involving 233 datasets in this meta-analysis. We observed large effect sizes for the differences between experts and non-experts in both response accuracy (1.51; 95% CI: 1.15 to 1.87, p < 0.05) and reaction time (-0.91; 95% CI: −1.08 to−0.73, p < 0.05). We also observed substantial differences between experts and non-experts in the mean duration of visual fixations per trial (1.51; 95% CI: −2.40 to −0.63, p < 0.05), but not in the visual fixation duration (0.16; −061 to 0.92, p = 0.69). Taken together, high-level combat athletes have more advantages in perceptual anticipation than lower-level athletes, showing faster and more accurate responses when facing the opponent's attacks, as well as focusing on fewer points of visual fixations than novice athletes. Different types of combat sports and stimulus presentations affect perceptual anticipation abilities to varying extents in relation to outcome measures, with more pronounced expertise in a stimulus that is closer to real-world situations

    Correlation analysis of chlorogenic acid and luteoloside biosyntheses with transcription levels of HQTs and FNSs in Lonicera species

    Get PDF
    Organic acids and flavonoids are the main active components in Lonicera species. Chlorogenic acid and luteoloside are important components, and their synthesis is regulated in plants by the phenyl-propanoid synthesis pathway. Downstream of the phenylpropanoid synthesis pathway, hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) and flavone synthase (FNS) are critical enzymes that are involved in chlorogenic acid and luteoloside biosynthesis, respectively.In this study, we first determined the dynamic accumulations of chlorogenic acid, luteoloside and other active components in different growth stages of the flower buds of Lonicera fulvotomentosa through HPLC-DAD and then investigated the expressions of the LJHQT and LJFNS gene families by q-RT-PCR. In addition, we also compared the expression levels of HQT and FNS orthologous genes in vari-ous tissues of Lonicera japonica, L. fulvotomentosa, and Lonicera hypoglauca.The results indicated that the chlorogenic acid contents exhibit leaf accumulation that is preferential in L. fulvotomentosa but exhibit bud accumulation that is preferential in L. japonica and L. hypoglauca. The luteoloside contents show preferential leaf accumulation in these three species. Our results suggest that the leaves and buds of these three species are rich in medicinal ingredients, including chlorogenic acid (CGA) and luteoloside, and therefore can be used as a material to extract CGA and luteoloside rather than being wasted. Furthermore, combined with the transcript expression levels of HQTs and FNSs, we explained the species-specific and tissue-specific occurrence of CGA and luteoloside. We analyzed dynamic changes of components and gene expression and demonstrated that the expressions of HQTs and FNSs in these three species are closely related to the synthesis of chlorogenic acid and luteoloside

    Simultaneous suppression of PKM2 and PHGDH elicits synergistic anti-cancer effect in NSCLC

    Get PDF
    Metabolic reprogramming is a hallmark of human cancer. Cancer cells exhibit enhanced glycolysis, which allows glycolytic intermediates to be diverted into several other biosynthetic pathways, such as serine synthesis. Here, we explored the anti-cancer effects of the pyruvate kinase (PK) M2 inhibitor PKM2-IN-1 alone or in combination with the phosphoglycerate dehydrogenase (PHGDH) inhibitor NCT-503 in human NSCLC A549 cells in vitro and in vivo. PKM2-IN-1 inhibited proliferation and induced cell cycle arrest and apoptosis, with increased glycolytic intermediate 3-phosphoglycerate (3-PG) level and PHGDH expression. The combination of PKM2-IN-1 and NCT-503 further suppressed cancer cell proliferation and induced G2/M phase arrest, accompanied by the reduction of ATP, activation of AMPK and inhibition of its downstream mTOR and p70S6K, upregulation of p53 and p21, as well as downregulation of cyclin B1 and cdc2. In addition, combined treatment triggered ROS-dependent apoptosis by affecting the intrinsic Bcl-2/caspase-3/PARP pathway. Moreover, the combination suppressed glucose transporter type 1 (GLUT1) expression. In vivo, co-administration of PKM2-IN-1 and NCT-503 significantly inhibited A549 tumor growth. Taken together, PKM2-IN-1 in combination with NCT-503 exhibited remarkable anti-cancer effects through induction of G2/M cell cycle arrest and apoptosis, in which the metabolic stress induced ATP reduction and ROS augmented DNA damage might be involved. These results suggest that the combination of PKM2-IN-1 and NCT-503 might be a potential strategy for the therapy of lung cancer

    VS-4718 Antagonizes Multidrug Resistance in ABCB1- and ABCG2-Overexpressing Cancer Cells by Inhibiting the Efflux Function of ABC Transporters

    Get PDF
    Overexpression of ATP-binding cassette (ABC) transporters is one of the most important mechanisms responsible for multi-drug resistance (MDR). VS-4718, a tyrosine kinase inhibitor targeting focal adhesion kinase (FAK) with a potential anticancer effect, is currently evaluated in clinical trials. In this study, we investigated whether VS-4718 could reverse MDR mediated by ABC transporters, including ABCB1, ABCG2, and ABCC1. The results showed that VS-4718 significantly reversed ABCB1- and ABCG2-mediated MDR, but not MDR mediated by ABCC1. Treatment of VS-4718 did not alter the protein level and subcellular localization of ABCB1 or ABCG2. Mechanism studies indicated that the reversal effects of VS-4718 were related to attenuation of the efflux activity of ABCB1 and ABCG2 transporters. ATPase analysis indicated that VS-4718 stimulated the ATPase activity of ABCB1 and ABCG2. Docking study showed that VS-4718 interacted with the substrate-binding sites of both ABCB1 and ABCG2, suggesting that VS-4718 may affect the activity of ABCB1 and ABCG2 competitively. This study provided a novel insight for MDR cancer treatment. It indicated that combination of VS-4718 with antineoplastic drugs could attenuate MDR mediated by ABCB1 or ABCG2 in ABCB1- or ABCG2-overexpressing cancer cells

    Generation, Characterization and Epitope Mapping of Two Neutralizing and Protective Human Recombinant Antibodies against Influenza A H5N1 Viruses

    Get PDF
    The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI) H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development.We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs), AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model.Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines

    Deep Common Semantic Space Embedding for Sketch-Based 3D Model Retrieval

    No full text
    Sketch-based 3D model retrieval has become an important research topic in many applications, such as computer graphics and computer-aided design. Although sketches and 3D models have huge interdomain visual perception discrepancies, and sketches of the same object have remarkable intradomain visual perception diversity, the 3D models and sketches of the same class share common semantic content. Motivated by these findings, we propose a novel approach for sketch-based 3D model retrieval by constructing a deep common semantic space embedding using triplet network. First, a common data space is constructed by representing every 3D model as a group of views. Second, a common modality space is generated by translating views to sketches according to cross entropy evaluation. Third, a common semantic space embedding for two domains is learned based on a triplet network. Finally, based on the learned features of sketches and 3D models, four kinds of distance metrics between sketches and 3D models are designed, and sketch-based 3D model retrieval results are achieved. The experimental results using the Shape Retrieval Contest (SHREC) 2013 and SHREC 2014 datasets reveal the superiority of our proposed method over state-of-the-art methods
    • …
    corecore