269 research outputs found

    Nonlinear Predictive Control of Mass Moment Aerospace Vehicles Based on Ant Colony Genetic Algorithm Optimization

    Get PDF
    Based on the mathematical model of the mass moment aerospace vehicles (MMAV), a coupled nonlinear dynamical system is established by rational simplification. The flight control system of MMAV is designed via utilizing nonlinear predictive control (NPC) approach. Aiming at the parameters of NPC is generally used the trial-and-error method to optimize and design, a novel kind of NPC parameters optimization strategy based on ant colony genetic algorithm (ACGA) is proposed in this paper. The method for setting NPC parameters with ACA in which the routes of ants are optimized by the genetic algorithm (GA) is derived. And then, a detailed realized process of this method is also presented. Furthermore, this optimization algorithm of the NPC parameters is applied to the flight control system of MMAV. The simulation results show that the system not only meets the demands of time-response specifications but also has excellent robustness

    Correlation analysis of chlorogenic acid and luteoloside biosyntheses with transcription levels of HQTs and FNSs in Lonicera species

    Get PDF
    Organic acids and flavonoids are the main active components in Lonicera species. Chlorogenic acid and luteoloside are important components, and their synthesis is regulated in plants by the phenyl-propanoid synthesis pathway. Downstream of the phenylpropanoid synthesis pathway, hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) and flavone synthase (FNS) are critical enzymes that are involved in chlorogenic acid and luteoloside biosynthesis, respectively.In this study, we first determined the dynamic accumulations of chlorogenic acid, luteoloside and other active components in different growth stages of the flower buds of Lonicera fulvotomentosa through HPLC-DAD and then investigated the expressions of the LJHQT and LJFNS gene families by q-RT-PCR. In addition, we also compared the expression levels of HQT and FNS orthologous genes in vari-ous tissues of Lonicera japonica, L. fulvotomentosa, and Lonicera hypoglauca.The results indicated that the chlorogenic acid contents exhibit leaf accumulation that is preferential in L. fulvotomentosa but exhibit bud accumulation that is preferential in L. japonica and L. hypoglauca. The luteoloside contents show preferential leaf accumulation in these three species. Our results suggest that the leaves and buds of these three species are rich in medicinal ingredients, including chlorogenic acid (CGA) and luteoloside, and therefore can be used as a material to extract CGA and luteoloside rather than being wasted. Furthermore, combined with the transcript expression levels of HQTs and FNSs, we explained the species-specific and tissue-specific occurrence of CGA and luteoloside. We analyzed dynamic changes of components and gene expression and demonstrated that the expressions of HQTs and FNSs in these three species are closely related to the synthesis of chlorogenic acid and luteoloside

    Effects of continuous cropping on bacterial community diversity and soil metabolites in soybean roots

    Get PDF
    The alternating planting of corn and soybeans is regarded as an effective strategy in addressing the challenges faced in soybean cultivation. However, the precise mechanisms that control the bacterial microbiome in soybean roots in the soil, particularly in continuous cropping and rotational corn–soybean farming rotations, are remain unclear. This study employed both field and pot positioning experiments, using high-throughput and generic metabolomics sequencing techniques to explore the dynamics between soybean plants, root microflora, and soil metabolites, especially in the context of continuous cropping and fluctuating corn–soybean crop rotation. The process that included rotating corn soybeans significantly enhanced their grain yield, dry weight, soil nitrogen concentration, urease activity, as well as the accumulation of nitrogen, phosphorus, and potassium in various plant organs, compared to the traditional practice of continuous soybean cultivation. There is a significant reduction in the transit of bacterial operational taxonomic units (OTUs) from the rhizosphere to the endosphere through rhizoplane. The number of bacterial OTUs that are consumed and enriched on rhizoplane is greater than those that are enriched and absorbed in the endosphere. Continuous cropping practices significantly boost Burkholderiales, whereas chloroplast microorganisms significantly improve crop rotation techniques. Soil environmental factors, such as urease and accessible phosphorus, are crucial in establishing the relative prevalence of Rhodanobacter and other bacterial groups. Soil metabolites, such as benzyl alcohol, show a positive correlation with Cyanobacteria, while acidic compounds, such as D-arabinitol, are positively linked with Burkholderiales. This study indicates that the rotation of corn and soybean crops facilitates the growth of soybeans, increases nutrient accumulation in both plants and soil, enhances the presence of beneficial bacteria, and improves soybean yields

    Evaluating the importation of yellow fever cases into China in 2016 and strategies used to prevent and control the spread of the disease

    Get PDF
    During the yellow fever epidemic in Angola in 2016, cases of yellow fever were reported in China for the first time. The 11 cases, all Chinese nationals returning from Angola, were identified in March and April 2016, one to two weeks after the peak of the Angolan epidemic. One patient died; the other 10 cases recovered after treatment. This paper reviews the epidemiological characteristics of the 11 yellow fever cases imported into China. It examines case detection and disease control and surveillance, and presents recommendations for further action to prevent additional importation of yellow fever into China

    Rapid, Specific Detection of Alphaviruses from Tissue Cultures Using a Replicon-Defective Reporter Gene Assay

    Get PDF
    We established a rapid, specific technique for detecting alphaviruses using a replicon-defective reporter gene assay derived from the Sindbis virus XJ-160. The pVaXJ expression vector containing the XJ-160 genome was engineered to form the expression vectors pVaXJ-EGFP expressing enhanced green fluorescence protein (EGFP) or pVaXJ-GLuc expressing Gaussia luciferase (GLuc). The replicon-defective reporter plasmids pVaXJ-EGFPΔnsp4 and pVaXJ-GLucΔnsp4 were constructed by deleting 1139 bp in the non-structural protein 4 (nsP4) gene. The deletion in the nsP4 gene prevented the defective replicons from replicating and expressing reporter genes in transfected BHK-21 cells. However, when these transfected cells were infected with an alphavirus, the non-structural proteins expressed by the alphavirus could act on the defective replicons in trans and induce the expression of the reporter genes. The replicon-defective plasmids were used to visualize the presence of alphavirus qualitatively or detect it quantitatively. Specificity tests showed that this assay could detect a variety of alphaviruses from tissue cultures, while other RNA viruses, such as Japanese encephalitis virus and Tahyna virus, gave negative results with this system. Sensitivity tests showed that the limit of detection (LOD) of this replicon-defective assay is between 1 and 10 PFU for Sindbis viruses. These results indicate that, with the help of the replicon-defective alphavirus detection technique, we can specifically, sensitively, and rapidly detect alphaviruses in tissue cultures. The detection technique constructed here may be well suited for use in clinical examination and epidemiological surveillance, as well as for rapid screening of potential viral biological warfare agents

    Strategies of Sustainable Development in China’s Wind Power Industry

    Full text link

    SDRE-based cooperative target tracking problem

    Full text link

    Status and prospects of Chinese wind energy

    Full text link
    corecore