27 research outputs found

    Correlation analysis of chlorogenic acid and luteoloside biosyntheses with transcription levels of HQTs and FNSs in Lonicera species

    Get PDF
    Organic acids and flavonoids are the main active components in Lonicera species. Chlorogenic acid and luteoloside are important components, and their synthesis is regulated in plants by the phenyl-propanoid synthesis pathway. Downstream of the phenylpropanoid synthesis pathway, hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) and flavone synthase (FNS) are critical enzymes that are involved in chlorogenic acid and luteoloside biosynthesis, respectively.In this study, we first determined the dynamic accumulations of chlorogenic acid, luteoloside and other active components in different growth stages of the flower buds of Lonicera fulvotomentosa through HPLC-DAD and then investigated the expressions of the LJHQT and LJFNS gene families by q-RT-PCR. In addition, we also compared the expression levels of HQT and FNS orthologous genes in vari-ous tissues of Lonicera japonica, L. fulvotomentosa, and Lonicera hypoglauca.The results indicated that the chlorogenic acid contents exhibit leaf accumulation that is preferential in L. fulvotomentosa but exhibit bud accumulation that is preferential in L. japonica and L. hypoglauca. The luteoloside contents show preferential leaf accumulation in these three species. Our results suggest that the leaves and buds of these three species are rich in medicinal ingredients, including chlorogenic acid (CGA) and luteoloside, and therefore can be used as a material to extract CGA and luteoloside rather than being wasted. Furthermore, combined with the transcript expression levels of HQTs and FNSs, we explained the species-specific and tissue-specific occurrence of CGA and luteoloside. We analyzed dynamic changes of components and gene expression and demonstrated that the expressions of HQTs and FNSs in these three species are closely related to the synthesis of chlorogenic acid and luteoloside

    Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of dengue, an infectious disease caused by dengue virus (DENV), has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs) has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated.</p> <p>Results</p> <p>By optimizing the expression plasmids, recombinant VLPs of four antigenically different DENV serotypes DENV1-4 were successfully produced in 293T cells. The vaccination effect of dengue VLPs in mice showed that monovalent VLPs of each serotype stimulated specific IgG responses and potent neutralizing antibodies against homotypic virus. Tetravalent VLPs efficiently enhanced specific IgG and neutralizing antibodies against all four serotypes of DENV. Moreover, vaccination with monovalent or tetravalent VLPs resulted in the induction of specific cytotoxic T cell responses.</p> <p>Conclusions</p> <p>Mammalian cell expressed dengue VLPs are capable to induce VLP-specific humoral and cellular immune responses in mice, and being a promising subunit vaccine candidate for prevention of dengue virus infection.</p

    A Systematic Molecular Pathology Study of a Laboratory Confirmed H5N1 Human Case

    Get PDF
    Autopsy studies have shown that human highly pathogenic avian influenza virus (H5N1) can infect multiple human organs other than just the lungs, and that possible causes of organ damage are either viral replication and/or dysregulation of cytokines and chemokines. Uncertainty still exists, partly because of the limited number of cases analysed. In this study, a full autopsy including 5 organ systems was conducted on a confirmed H5N1 human fatal case (male, 42 years old) within 18 hours of death. In addition to the respiratory system (lungs, bronchus and trachea), virus was isolated from cerebral cortex, cerebral medullary substance, cerebellum, brain stem, hippocampus ileum, colon, rectum, ureter, aortopulmonary vessel and lymph-node. Real time RT-PCR evidence showed that matrix and hemagglutinin genes were positive in liver and spleen in addition to positive tissues with virus isolation. Immunohistochemistry and in-situ hybridization stains showed accordant evidence of viral infection with real time RT-PCR except bronchus. Quantitative RT-PCR suggested that a high viral load was associated with increased host responses, though the viral load was significantly different in various organs. Cells of the immunologic system could also be a target for virus infection. Overall, the pathogenesis of HPAI H5N1 virus was associated both with virus replication and with immunopathologic lesions. In addition, immune cells cannot be excluded from playing a role in dissemination of the virus in vivo

    Lifecycle assessment of fossil energy and greenhouse gas emissions for ...

    No full text
    Issued as final reportRenmatix, Inc

    A Geoarchaeological Reading of the City-Overlap-City Phenomenon in the Lower Yellow River Floodplain: A Case Study of Kaifeng City, China

    No full text
    The unique urban form on the ground and the &#8220;city overlap city&#8222; phenomenon occurring underground at Kaifeng city, on the Yellow River floodplain, is investigated. Archaeological data and historical geographical analysis were used to study the form of surface remains. Primary data were collected from four 25 m long drill cores which were obtained from different locations at Kaifeng city and the sedimentary cycles were quantitatively divided-out and dated. The results show that the evolution of Kaifeng&#8217;s surface urban form mainly occurred over four periods, the first of which was before 225 BC; the second took place between 225 BC and 956 AD; the third between 956 AD and 1219 AD; and the fourth between 1219 AD and 1907 AD. The results support the view that the city wall of today has undergone continuous reconstruction on the basis of previous city walls and thus forming the special landscape sequence of overlapped walls as a result of the 1642 AD and 1841 AD floods. The results also substantiate the &#8220;city overlap city&#8222; phenomenon at Kaifeng city where there are at least &#8220;three and a half ancient cities&#8222; located underground today, and suggests the &#8220;city overlap city&#8222; landscape is a harmonious production comprising both natural and human heritages that are of worldwide significance in terms of authenticity and integrity. Our results contribute to understanding the effects of Yellow River flooding on shaping adaptive landscapes and human beings, and suggest that Kaifeng city as well as other lower Yellow River sites become World Heritage sites

    Life Cycle Energy and Greenhouse Gas Emissions for an Ethanol Production Process Based on Blue-Green Algae

    No full text
    Ethanol can be produced via an intracellular photosynthetic process in cyanobacteria (blue-green algae), excreted through the cell walls, collected from closed photobioreactors as a dilute ethanol-in-water solution, and purified to fuel grade ethanol. This sequence forms the basis for a biofuel production process that is currently being examined for its commercial potential. In this paper, we calculate the life cycle energy and greenhouse gas emissions for three different system scenarios for this proposed ethanol production process, using process simulations and thermodynamic calculations. The energy required for ethanol separation increases rapidly for low initial concentrations of ethanol, and, unlike other biofuel systems, there is little waste biomass available to provide process heat and electricity to offset those energy requirements. The ethanol purification process is a major consumer of energy and a significant contributor to the carbon footprint. With a lead scenario based on a natural-gas-fueled combined heat and power system to provide process electricity and extra heat and conservative assumptions around the ethanol separation process, the net life cycle energy consumption, excluding photosynthesis, ranges from 0.55 MJ/MJ<sub>EtOH</sub> down to 0.20 MJ/MJ<sub>EtOH</sub>, and the net life cycle greenhouse gas emissions range from 29.8 g CO<sub>2</sub>e/MJ<sub>EtOH</sub> down to 12.3 g CO<sub>2</sub>e/MJ<sub>EtOH</sub> for initial ethanol concentrations from 0.5 wt % to 5 wt %. In comparison to gasoline, these predicted values represent 67% and 87% reductions in the carbon footprint for this ethanol fuel on a energy equivalent basis. Energy consumption and greenhouse gas emissions can be further reduced via employment of higher efficiency heat exchangers in ethanol purification and/or with use of solar thermal for some of the process heat
    corecore