23 research outputs found

    A Review of Fluorine-free Mold Flux Development

    No full text

    In-situ Study of Crystallisation Behaviour of CaO–SiO2–Na2O–B2O3–TiO2–Al2O3–MgO–Li2O Fluorine-free Mould Fluxes with Different CaO/SiO2 Ratios

    Get PDF
    The increasing environmental concern for the fluorine emission in steel continuous casting makes the development of fluorine-free mould fluxes imperative. The main challenge in the development of fluorine-free mould fluxes is controlling heat transfer rate which is closely related to the crystallisation behaviour of mould fluxes. In this study, the crystallisation behaviour of CaO–SiO2–Na2O–B2O3–TiO2–Al2O3–MgO–Li2O fluorine-free mould fluxes with CaO/SiO2 mass ratios from 0.9 to 1.2 was examined using single hot thermocouple technique (SHTT) and double hot thermocouple technique (DHTT). Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams developed using SHTT showed that the crystallisation temperature increased and the incubation time decreased with the increase of CaO/SiO2 ratio. DHTT was used to simulate the temperature gradient between copper mould and strand in steel continuous casting. Analysis of the crystallinity evolution in the simulated temperature field showed an increased crystallinity of fluxes with the increase of the CaO/SiO2 ratio at certain times. The crystal phases and crystal morphologies formed in different conditions were analysed by X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray energy dispersive spectroscopy (EDS). Phases formed in the process of the flux crystallisation included CaSiO3, Ca2MgSi2O7 and Ca11Si4B2O22. It revealed that CaSiO3 was the major phase at low CaO/SiO2 ratio. The amount of Ca2MgSi2O7 and Ca11Si4B2O22 increased with increasing CaO/SiO2 ratio

    GGVD: A goat genome variation database for tracking the dynamic evolutionary process of selective signatures and ancient introgressions

    No full text
    Understanding the evolutionary history and adaptive process depends on the knowledge that we can acquire from both ancient and modern genomic data. With the availability of a deluge of whole-genome sequencing data from ancient and modern goat samples, a user-friendly database making efficient reuse of these important resources is needed. Here, we use the genomes of 208 modern domestic goats, 24 bezoars, 46 wild ibexes, and 82 ancient goats to present a comprehensive goat genome variation database (GGVD). GGVD hosts a total of ∼41.44 million SNPs, ∼5.14 million indels, 6,193 selected loci, and 112 introgression regions. Users can freely visualize the frequency of genomic variations in geographical maps, selective sweeps in interactive tables, Manhattan plots, or line charts, as well as the heatmap patterns of the SNP genotype. Ancient data can be shown in haplotypes to track the state of genetic variants of selection and introgression events in the early, middle, and late stages. For facilitating access to sequence features, the UCSC Genome Browser, BLAT, BLAST, LiftOver, and pcadapt are also integrated into GGVD. GGVD will be a convenient tool for population genetic studies and molecular marker designing in goat breeding programs, and it is publicly available at http://animal.nwsuaf.edu.cn/GoatVar

    LncEDCH1 g.1703613 T>C regulates chicken carcass traits by targeting miR-196-2-3p

    No full text
    ABSTRACT: Single nucleotide polymorphisms (SNPs) are valuable genetic markers that can provide insights into the genetic diversity and variation within chicken populations. In poultry breeding, SNP analysis is widely utilized to accelerate the selection of desirable traits, improving the efficiency and effectiveness of chicken breeding programs. In our previous research, we identified an association between LncEDCH1 and muscle development. To further investigate its specific mechanism, we conducted SNP detection and performed genotyping, linkage disequilibrium, and haplotype analysis. Our research findings indicate that 16 SNPs in the LncEDCH1. Among these SNPs, g.1703497 C>T and g.1704262 C>T were significantly associated with breast muscle weight percentage, g.1703497 C>T and g.1703613 T>C were significantly associated with leg weight percentage, and g.1703497 C>T, g.1703589 T>C, g.1703613 T>C, g.1703636 C>A, g.1703768 T>C, g.1704079 C>T, g.1704250 T>C, g.1704253 G>A were significantly associated with skin yellowness. Two haplotype blocks composed of 6 SNPs that were significantly associated with wing skin yellowness, breast skin yellowness, full-bore weight, and carcass weight percentage. Furthermore, through dual-luciferase reporter assays, biotin-coupled miRNA pull-down assays, 5-ethynyl-2′-deoxyuridine (EDU) assays, immunofluorescence, and quantitative real-time polymerase chain reaction (qPCR), it has been confirmed that miR-196-2-3p inhibits the expression of LncEDCH1 directly by binding to LncEDCH1 g.1703613T>C, thereby achieving indirect regulation of muscle development. These findings provide valuable molecular markers for chicken molecular breeding and broaden our understanding of the regulatory mechanisms

    Simulating the impact of climate change on the growth of Chinese fir plantations in Fujian province, China

    No full text
    Background: Climate change represents a considerable source of uncertainty with respect to the long-term health and productivity of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations in southeastern China. Methods: We employed the process-based, stand-level model FORECAST Climate to investigate the potential impact of four alternative climate-change scenarios on the long-term growth and development of Chinese fir plantations in Fujian province, China. The capability of the model to project seasonal patterns of productivity related to variation in temperature and moisture availability was evaluated using 11 years of 8-day composite MODIS remote sensing data. Results: Simulation results suggest climate change will lead to a modest increase in long-term stemwood biomass production (6.1 to 12.1% after 30 to 60 years). The positive impact of climate change was largely attributable to both a lengthening of the growing season and an increase in nutrient-cycling rates. The increase in atmospheric CO2 concentrations associated with the different emission scenarios led to an increase in water-use efficiency and a small increase in productivity. While the model predicted an overall increase in dry-season moisture stress, it did not predict increased levels of drought-related mortality. Conclusions: Climate change is expected have positive impact on the growth of Chinese fir in the Fujian region of China. However, the projected increase in plantation productivity associated with climate change may not be realised if the latter also results in enhanced activity of biotic and abiotic disturbance agents.Forestry, Faculty ofNon UBCReviewedFacult

    The application value of multi-parameter cystoscope in improving the accuracy of preoperative bladder cancer grading

    No full text
    Abstract Purpose To develop and validate a preoperative cystoscopic-based predictive model for predicting postoperative high-grade bladder cancer (BCa), which could be used to guide the surgical selection and postoperative treatment strategies. Materials and methods We retrospectively recruited 366 patients with cystoscopy biopsy for pathology and morphology evaluation between October 2010 and January 2021. A binary logistic regression model was used to assess the risk factors for postoperative high-grade BCa. Diagnostic performance was analyzed by plotting receiver operating characteristic curve and calculating area under the curve (AUC), sensitivity, specificity. From January 2021 to July 2021, we collected 105 BCa prospectively to validate the model's accuracy. Results A total of 366 individuals who underwent transurethral resection of bladder tumor (TURBT) or radical cystectomy following cystoscopy biopsy were included for analysis. 261 (71.3%) had a biopsy pathology grade that was consistent with postoperative pathology grade. We discovered five cystoscopic parameters, including tumor diameter, site, non-pedicled, high-grade biopsy pathology, morphology, were associated with high-grade BCa. The established multi-parameter logistic regression model (“JSPH” model) revealed AUC was 0.917 (P < 0.001). Sensitivity and specificity were 86.2% and 84.0%, respectively. And the consistency of pre- and post-operative high-grade pathology was improved from biopsy-based 70.5% to JSPH model-based 85.2%. In a 105-patients prospective validation cohort, the consistency of pre- and post-operative high-grade pathology was increased from 63.1 to 84.2% after incorporation into JSPH model for prediction. Conclusion The cystoscopic parameters based “JSPH model” is accurate at predicting postoperative pathological high-grade tumors prior to operations

    Oxidation-Induced Protein Cross-Linking in Mammalian Cells

    No full text
    A proximity-enabled protein cross-linking strategy with additional spatiotemporal control is highly desirable. Here, we report an oxidation-induced protein cross-linking strategy involving the incorporation of a vinyl thioether group into proteins in both Escherichia coli and mammalian cells via genetic code expansion. We demonstrated that vinyl thioether can be selectively induced by exogenously added oxidant or by reactive oxygen species from the cellular environment, as well as by photocatalysts, and converted into a Michael acceptor, enabling fluorescence labeling and protein cross-linking
    corecore