178 research outputs found

    Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation

    Get PDF
    Early life stressors display a high universal prevalence and constitute a major public health problem. Prolonged psychoneurobiological alterations as sequelae of early life stress (ELS) could represent a developmental risk factor and mediate risk for disease, leading to higher physical and mental morbidity rates in later life. ELS could exert a programming effect on sensitive neuronal brain networks related to the stress response during critical periods of development and thus lead to enduring hyper- or hypo-activation of the stress system and altered glucocorticoid signaling. In addition, alterations in emotional and autonomic reactivity, circadian rhythm disruption, functional and structural changes in the brain, as well as immune and metabolic dysregulation have been lately identified as important risk factors for a chronically impaired homeostatic balance after ELS. Furthermore, human genetic background and epigenetic modifications through stress-related gene expression could interact with these alterations and explain inter-individual variation in vulnerability or resilience to stress. This narrative review presents relevant evidence from mainly human research on the ten most acknowledged neurobiological allostatic pathways exerting enduring adverse effects of ELS even decades later (hypothalamic-pituitary-adrenal axis, autonomic nervous system, immune system and inflammation, oxidative stress, cardiovascular system, gut microbiome, sleep and circadian system, genetics, epigenetics, structural, and functional brain correlates). Although most findings back a causal relation between ELS and psychobiological maladjustment in later life, the precise developmental trajectories and their temporal coincidence has not been elucidated as yet. Future studies should prospectively investigate putative mediators and their temporal sequence, while considering the potentially delayed time-frame for their phenotypical expression. Better screening strategies for ELS are needed for a better individual prevention and treatment

    Noninvasive vagus nerve stimulation alters neural response and physiological autonomic tone to noxious thermal challenge.

    Get PDF
    The mechanisms by which noninvasive vagal nerve stimulation (nVNS) affect central and peripheral neural circuits that subserve pain and autonomic physiology are not clear, and thus remain an area of intense investigation. Effects of nVNS vs sham stimulation on subject responses to five noxious thermal stimuli (applied to left lower extremity), were measured in 30 healthy subjects (n = 15 sham and n = 15 nVNS), with fMRI and physiological galvanic skin response (GSR). With repeated noxious thermal stimuli a group × time analysis showed a significantly (p < .001) decreased response with nVNS in bilateral primary and secondary somatosensory cortices (SI and SII), left dorsoposterior insular cortex, bilateral paracentral lobule, bilateral medial dorsal thalamus, right anterior cingulate cortex, and right orbitofrontal cortex. A group × time × GSR analysis showed a significantly decreased response in the nVNS group (p < .0005) bilaterally in SI, lower and mid medullary brainstem, and inferior occipital cortex. Finally, nVNS treatment showed decreased activity in pronociceptive brainstem nuclei (e.g. the reticular nucleus and rostral ventromedial medulla) and key autonomic integration nuclei (e.g. the rostroventrolateral medulla, nucleus ambiguous, and dorsal motor nucleus of the vagus nerve). In aggregate, noninvasive vagal nerve stimulation reduced the physiological response to noxious thermal stimuli and impacted neural circuits important for pain processing and autonomic output

    High executive functioning is associated with reduced posttraumatic stress after trauma exposure among male U.S. military personnel

    Get PDF
    IntroductionEvidence suggests that executive function (EF) may play a key role in development of PTSD, possibly influenced by factors such as trauma type and timing. Since EF can be improved through intervention, it may be an important target for promoting resilience to trauma exposure. However, more research is needed to understand the relation between trauma exposure, EF, and PTSD. The goal of this study was to improve understanding of EF as a potential antecedent or protective factor for the development of PTSD among military personnel.MethodIn a cohort of U.S. Marines and Navy personnel (N = 1,373), the current study tested the association between exposure to traumatic events (pre-deployment and during deployment) and PTSD severity, and whether EF moderated these associations. Three types of pre-deployment trauma exposure were examined: cumulative exposure, which included total number of events participants endorsed as having happened to them, witnessed, or learned about; direct exposure, which included total number of events participants endorsed as having happened to them; and interpersonal exposure, which included total number of interpersonally traumatic events participants’ endorsed. EF was measured using the Penn Computerized Neurocognitive Battery.ResultsEF was associated with less PTSD symptom severity at pre-deployment, even when adjusting for trauma exposure, alcohol use, traumatic brain injury, and number of years in the military. EF also moderated the relation between cumulative trauma exposure and interpersonal trauma exposure and PTSD, with higher EF linked to a 20 and 33% reduction in expected point increase in PTSD symptoms with cumulative and interpersonal trauma exposure, respectively. Finally, higher pre-deployment EF was associated with reduced PTSD symptom severity at post-deployment, independent of deployment-related trauma exposure and adjusting for pre-deployment PTSD.ConclusionOur results suggest that EF plays a significant, if small role in the development of PTSD symptoms after trauma exposure among military personnel. These findings provide important considerations for future research and intervention and prevention, specifically, incorporating a focus on improving EF in PTSD treatment

    A new common functional coding variant at the DDC gene change renal enzyme activity and modify renal dopamine function.

    Get PDF
    The intra-renal dopamine (DA) system is highly expressed in the proximal tubule and contributes to Na+ and blood pressure homeostasis, as well as to the development of nephropathy. In the kidney, the enzyme DOPA Decarboxylase (DDC) originating from the circulation. We used a twin/family study design, followed by polymorphism association analysis at DDC locus to elucidate heritable influences on renal DA production. Dense single nucleotide polymorphism (SNP) genotyping across the DDC locus on chromosome 7p12 was analyzed by re-sequencing guided by trait-associated genetic markers to discover the responsible genetic variation. We also characterized kinetics of the expressed DDC mutant enzyme. Systematic polymorphism screening across the 15-Exon DDC locus revealed a single coding variant in Exon-14 that was associated with DA excretion and multiple other renal traits indicating pleiotropy. When expressed and characterized in eukaryotic cells, the 462Gln variant displayed lower Vmax (maximal rate of product formation by an enzyme) (21.3 versus 44.9 nmol/min/mg) and lower Km (substrate concentration at which half-maximal product formation is achieved by an enzyme.)(36.2 versus 46.8 μM) than the wild-type (Arg462) allele. The highly heritable DA excretion trait is substantially influenced by a previously uncharacterized common coding variant (Arg462Gln) at the DDC gene that affects multiple renal tubular and glomerular traits, and predicts accelerated functional decline in chronic kidney disease

    Measuring Novel Antecedents of Mental Illness: The Questionnaire of Unpredictability in Childhood

    Get PDF
    Increasing evidence indicates that, in addition to poverty, maternal depression, and other well-established factors, unpredictability of maternal and environmental signals early in life influences trajectories of brain development, determining risk for subsequent mental illness. However, whereas most risk factors for later vulnerability to mental illness are readily measured using existing, clinically available tools, there are no similar measures for assessing early-life unpredictability. Here we validate the Questionnaire of Unpredictability in Childhood (QUIC) and examine its associations with mental health in the context of other indicators of childhood adversity (e.g., traumatic life events, socioeconomic status, and parenting quality). The QUIC was initially validated through administration to a cohort of adult females (N = 116) and then further refined in two additional independent cohorts (male Veterans, N = 95, and male and female adolescents, N = 175). The QUIC demonstrated excellent internal (α = 0.89) and test–retest reliability (r = 92). Scores on the QUIC were positively correlated with other prospective indicators of exposures to unpredictable maternal inputs in infancy and childhood (unpredictable maternal mood and sensory signals), and accuracy of recall also was confirmed with prospective data. Importantly, the QUIC predicted symptoms of anxiety, depression, and anhedonia in the three study cohorts, and these effects persisted after adjusting for other previously established risk factors. The QUIC, a reliable and valid self-report assessment of exposure to unpredictability in the social, emotional, and physical domains during early life, is a brief, comprehensive, and promising instrument for predicting risk for mental illness

    Addendum: Exposure to unpredictability and mental health: Validation of the brief version of the Questionnaire of Unpredictability in Childhood (QUIC-5) in English and Spanish

    Get PDF
    This article is a correction to: Exposure to unpredictability and mental health: Validation of the brief version of the Questionnaire of Unpredictability in Childhood (QUIC-5) in English and Spanish by Lindert, N. G., Maxwell, M. Y., Liu, S. R., Stern, H. S., Baram, T. Z., Poggi Davis, E., Risbrough, V. B., Baker, D. G., Nievergelt, C. M., and Glynn, L. M. (2022). Front. Psychol. 13:971350. doi: 10.3389/fpsyg.2022.97135
    • …
    corecore