368 research outputs found

    Star formation around mid-infrared bubble N37: Evidence of cloud-cloud collision

    Full text link
    We have performed a multi-wavelength analysis of a mid-infrared (MIR) bubble N37 and its surrounding environment. The selected 15′×' \times15′' area around the bubble contains two molecular clouds (N37 cloud; Vlsr∼_{lsr}\sim37-43 km s−1^{-1}, and C25.29+0.31; Vlsr∼_{lsr}\sim43-48 km s−1^{-1}) along the line of sight. A total of seven OB stars are identified towards the bubble N37 using photometric criteria, and two of them are spectroscopically confirmed as O9V and B0V stars. Spectro-photometric distances of these two sources confirm their physical association with the bubble. The O9V star is appeared to be the primary ionizing source of the region, which is also in agreement with the desired Lyman continuum flux analysis estimated from the 20 cm data. The presence of the expanding HII region is revealed in the N37 cloud which could be responsible for the MIR bubble. Using the 13^{13}CO line data and photometric data, several cold molecular condensations as well as clusters of young stellar objects (YSOs) are identified in the N37 cloud, revealing ongoing star formation (SF) activities. However, the analysis of ages of YSOs and the dynamical age of the HII region do not support the origin of SF due to the influence of OB stars. The position-velocity analysis of 13^{13}CO data reveals that two molecular clouds are inter-connected by a bridge-like structure, favoring the onset of a cloud-cloud collision process. The SF activities (i.e. the formation of YSOs clusters and OB stars) in the N37 cloud are possibly influenced by the cloud-cloud collision.Comment: 18 pages, 13 figures, 2 tables, Accepted for publication in the Ap

    Origin of X-rays in the low state of the FSRQ 3C 273: Evidence of inverse Compton emission

    Full text link
    We analyze the 2.5--10 keV X-ray spectra of the luminous quasar 3C 273 and simultaneous observations in UV wavelengths from XMM--Newton between 2000 and 2015. The lowest flux level ever was observed in 2015. The continuum emission from 3C 273 is generally best described by an absorbed power-law but during extremely low states the addition of fluorescence from the K-shell iron line improves the fit. We study the spectral evolution of the source during its extended quiescent state and also examine connections between the X-ray and ultraviolet emissions, which have been seen in some, but not all, previous work. We detect a possible anti-correlation between these two bands during the low state that characterized 3C 273 for most of this period; however, this was not present during a flaring state. A harder-when-brighter trend for the X-ray spectrum was observed in these long-term observations of 3C 273 for the first time. We suggest that the X-ray emission in 3C 273 is the result of inverse Compton scattering of soft UV seed photons (emitted from the local environment of the AGN), most likely in a thermal corona. We can explain the significant temporal variation of the spectral continuum as an outcome of changing optical depth of the comptonizing medium, along the lines of the wind-shock model proposed by Courvoisier and Camenzind (1989).Comment: 17 pages, 8 figures, 3 tables; Accepted for publication in MNRA

    Extended H? emission line sources from UWISH2

    Get PDF
    We present the extended source catalogue for the UKIRT Wide Field Infrared Survey for H2 (UWISH2). The survey is unbiased along the inner Galactic Plane from l ? 357° to l ? 65° and |b| ? 1.5° and covers 209 deg2. A further 42.0 and 35.5 deg2 of high dust column density regions have been targeted in Cygnus and Auriga. We have identified 33 200 individual extended H2 features. They have been classified to be associated with about 700 groups of jets and outflows, 284 individual (candidate) planetary nebulae, 30 supernova remnants and about 1300 photodissociation regions. We find a clear decline of star formation activity (traced by H2 emission from jets and photodissociation regions) with increasing distance from the Galactic Centre. About 60 per cent of the detected candidate planetary nebulae have no known counterpart and 25 per cent of all supernova remnants have detectable H2 emission associated with them

    XMM observations of the narrow-line QSO PHL 1092: Detection of a high and variable soft component

    Full text link
    We present results based on an XMM-Newton observation of the high luminosity narrow-line QSO PHL 1092 performed in 2003 January. The 0.3 - 10 keV spectrum is well described by a model which includes a power-law (Gamma ~ 2.1) and two blackbody components (kT ~ 130 eV and kT ~ 50 eV). The soft X-ray excess emission is featureless and contributes ~ 80% to the total X-ray emission in the 0.3 - 10 keV band. The most remarkable feature of the present observation is the detection of X-ray variability at very short time scale: the X-ray emission varied by 35% in about 5000 s. We find that this variability can be explained by assuming that only the overall normalization varied during the observation. There was no evidence for any short term spectral variability and the spectral shape was similar even during the ASCA observation carried out in 1997. Considering the high intrinsic luminosity (~ 2x10^45 erg/s) and the large inferred mass of the putative black hole (~ 1.6x10^8 M_sun), the observed time scale of variability indicates emission at close to Eddington luminosity arising from very close to the black hole. We suggest that PHL 1092 in particular (and narrow line Seyfert galaxies in general) is a fast rotating black hole emitting close to its Eddington luminosity and the X-ray emission corresponds to the high-soft state seen in Galactic black hole sources.Comment: 7 figures, 8 pages, emulateapj style, ApJ in pres

    A multi-wavelength study of star formation activity in the S235 complex

    Full text link
    We have carried out an extensive multi-wavelength study to investigate the star formation process in the S235 complex. The S235 complex has a sphere-like shell appearance at wavelengths longer than 2 μ\mum and harbors an O9.5V type star approximately at its center. Near-infrared extinction map traces eight subregions (having AV_{V} >> 8 mag), and five of them appear to be distributed in an almost regularly spaced manner along the sphere-like shell surrounding the ionized emission. This picture is also supported by the integrated 12^{12}CO and 13^{13}CO intensity maps and by Bolocam 1.1 mm continuum emission. The position-velocity analysis of CO reveals an almost semi-ring like structure, suggesting an expanding H\,{\sc ii} region. We find that the Bolocam clump masses increase as we move away from the location of the ionizing star. This correlation is seen only for those clumps which are distributed near the edges of the shell. Photometric analysis reveals 435 young stellar objects (YSOs), 59\% of which are found in clusters. Six subregions (including five located near the edges of the shell) are very well correlated with the dust clumps, CO gas, and YSOs. The average values of Mach numbers derived using NH3_{3} data for three (East~1, East~2, and Central~E) out of these six subregions are 2.9, 2.3, and 2.9, indicating these subregions are supersonic. The molecular outflows are detected in these three subregions, further confirming the on-going star formation activity. Together, all these results are interpreted as observational evidence of positive feedback of a massive star.Comment: 28 pages, 15 figures, 3 tables, Accepted for publication in The Astrophysical Journa
    • …
    corecore