1,353 research outputs found
The Impact of Galaxy Formation on the Diffuse Background Radiation
The far infrared background is a sink for the hidden aspects of galaxy
formation. At optical wavelengths, ellipticals and spheroids are old, even at
Neither the luminous formation phase nor their early evolution is
seen in the visible. We infer that ellipticals and, more generally, most
spheroids must have formed in dust-shrouded starbursts. In this article, we
show how separate tracking of disk and spheroid star formation enables us to
infer that disks dominate near the peak in the cosmic star formation rate at z
\lapproxeq 2 and in the diffuse ultraviolet/optical/infrared background,
whereas spheroid formation dominates the submillimetre background.Comment: 12 pages, 5 figures, to appear in proceedings of IAU symp.204, "The
Extragalactic Infrared Background and its Cosmological Implications", Martin
Harwit and Michael G. Hauser, ed
The spectral appearance of primeval galaxies
The current and forthcoming observations of large samples of high-redshift
galaxies selected according to various photometric and spectroscopic criteria
can be interpreted in the context of galaxy formation, by means of models of
evolving spectral energy distributions (SEDs). We hereafter present STARDUST
which gives synthetic SEDs from the far UV to the submm wavelength range. These
SEDs are designed to be implemented into semi-analytic models of galaxy
formation.Comment: 10 pages, Latex, 8 postscript figures, to be published in the
Proceedings of the meeting ``Clustering at High Redshift'', ASP Conference
Serie
The hierarchical build-up of the Tully-Fisher relation
We use the semi-analytic model GalICS to predict the Tully-Fisher relation in the B, I and for the first time, in the K band, and its evolution with redshift, up to z~1. We refined the determination of the disk galaxies rotation velocity, with a dynamical recipe for the rotation curve, rather than a simple conversion from the total mass to maximum velocity. The new recipe takes into account the disk shape factor, and the angular momentum transfer occurring during secular evolution leading to the formation of bulges. This produces model rotation velocities that are lower by ~20-25% for the majority of the spirals. We implemented stellar population models with a complete treatment of the TP-AGB, which leads to a revision of the mass-to-light ratio in the near-IR. I/K band luminosities increase by ~0.3/0.5 mags at redshift z=0 and by ~0.5/1 mags at z=3. With these two new recipes in place, the comparison between the predicted Tully-Fisher relation with a series of datasets in the optical and near-IR, at redshifts between 0 and 1, is used as a diagnostics of the assembly and evolution of spiral galaxies in the model. At 0.
The FIR/submm window on galaxy formation
Our view on the deep universe has been so far biased towards optically bright
galaxies. Now, the measurement of the Cosmic Infrared Background in FIRAS and
DIRBE residuals, and the observations of FIR/submm sources by the ISOPHOT and
SCUBA instruments begin unveiling the ``optically dark side'' of galaxy
formation. Though the origin of dust heating is still unsolved, it appears very
likely that a large fraction of the FIR/submm emission is due to
heavily-extinguished star formation. Consequently, the level of the CIRB
implies that about 2/3 of galaxy/star formation in the universe is hidden by
dust shrouds. In this review, we introduce a new modeling of galaxy formation
and evolution that provides us with specific predictions in FIR/submm
wavebands. These predictions are compared with the current status of the
observations. Finally, the capabilities of current and forthcoming instruments
for all-sky and deep surveys of FIR/submm sources are briefly described.Comment: 10 pages, Latex, 5 postscript figures, to appear in ``The Birth of
Galaxies'', 1999, B. Guiderdoni, F.R. Bouchet, T.X. Thuan & J. Tran Thanh Van
(eds), Editions Frontiere
Galaxy Modelling -- I. Spectral Energy Distributions from Far-UV to Sub-mm Wavelengths
(abridged) We present STARDUST, a new self-consistent modelling of the
spectral energy distributions (SEDs) of galaxies from far-UV to radio
wavelengths. In order to derive the SEDs in this broad spectral range, we first
couple spectrophotometric and (closed-box) chemical evolutions to account for
metallicity effects on the spectra of synthetic stellar populations. We then
use a phenomenological fit for the metal-dependent extinction curve and a
simple geometric distribution of the dust to compute the optical depth of
galaxies and the corresponding obscuration curve. This enables us to calculate
the fraction of stellar light reprocessed in the infrared range. In a final
step, we define a dust model with various components and we fix the weights of
these components in order to reproduce the IRAS correlation of IR colours with
total IR luminosities. This allows us to compute far-IR SEDs that
phenomenologically mimic observed trends. We are able to predict the spectral
evolution of galaxies in a broad wavelength range, and we can reproduce the
observed SEDs of local spirals, starbursts, luminous infrared galaxies (LIRGs)
and ultra luminous infrared galaxies (ULIRGs). This modelling is so far kept as
simple as possible and depends on a small number of free parameters, namely the
initial mass function (IMF), star formation rate (SFR) time scale, gas density,
and galaxy age, as well as on more refined assumptions on dust properties and
the presence (or absence) of gas inflows/outflows.Comment: 20 pages, 23 figures, Accepted for publication in Astronomy and
Astrophysics Main Journa
Op zoek naar archeologie bij Doug's duin, Kamperhoekweg, Swifterbant, gemeente Dronten. Inventariserend veldonderzoek door middel van boringen
Grondsporen 4 presenteert de resultaten van het inventariserend veldonderzoek in de vorm van grondboringen uitgevoerd rondom een rivierduin ten oosten van de Kamperhoekweg in Swifterbant, gemeente Dronten
Reionization history constraints from neural network based predictions of high-redshift quasar continua
Observations of the early Universe suggest that reionization was complete by
, however, the exact history of this process is still unknown. One
method for measuring the evolution of the neutral fraction throughout this
epoch is via observing the Ly damping wings of high-redshift quasars.
In order to constrain the neutral fraction from quasar observations, one needs
an accurate model of the quasar spectrum around Ly, after the spectrum
has been processed by its host galaxy but before it is altered by absorption
and damping in the intervening IGM. In this paper, we present a novel machine
learning approach, using artificial neural networks, to reconstruct quasar
continua around Ly. Our QSANNdRA algorithm improves the error in this
reconstruction compared to the state-of-the-art PCA-based model in the
literature by 14.2% on average, and provides an improvement of 6.1% on average
when compared to an extension thereof. In comparison with the extended PCA
model, QSANNdRA further achieves an improvement of 22.1% and 16.8% when
evaluated on low-redshift quasars most similar to the two high-redshift quasars
under consideration, ULAS J1120+0641 at and ULAS J1342+0928 at
, respectively. Using our more accurate reconstructions of these two
quasars, we estimate the neutral fraction of the IGM using a homogeneous
reionization model and find at
and at . Our
results are consistent with the literature and favour a rapid end to
reionization
Evidence for Multiple Mergers among Ultraluminous IR Galaxies (ULIRGs): Remnants of Compact Groups?
In a large sample of ULIRGs imaged with HST, we have identified a significant
subsample that shows evidence for multiple mergers. The evidence is seen among
two classes of ULIRGs: (1) those with multiple remnant nuclei in their core,
sometimes accompanied by a complex system of tidal tails; and (2) those that
are in fact dense groupings of interacting (soon-to-merge) galaxies. We
conservatively estimate that, in the redshift range 0.05<z<0.20, at least 20
(out of 99) ULIRGs satisfy one or both of these criteria. We present several
cases and discuss the possibility that the progenitors of ULIRGs may be the
more classical weakly interacting compact groups of galaxies (Hickson 1997). An
evolutionary progression is consistent with the results: from compact groups to
pairs to ULIRGs to ellipticals. The last step follows the blowout of gas and
dust from the ULIRG.Comment: 5 pages, including 1 color postscript figure. Published in the
Astrophysical Journal Letters (1 Feb 2000). Replaced with final edited
version, including corrected typos and additional references, plus the color
figure has been improved and is only available her
Unveiling a Population of X-ray Non-Detected AGN
We define a sample of 27 radio-excess AGN in the Chandra Deep Field North by
selecting galaxies that do not obey the radio/infrared correlation for
radio-quiet AGN and star-forming galaxies. Approximately 60% of these
radio-excess AGN are X-ray undetected in the 2 Ms Chandra catalog, even at
exposures of > 1 Ms; 25% lack even 2-sigma X-ray detections. The absorbing
columns to the faint X-ray-detected objects are 10^22 cm^-2 < N_H < 10^24
cm^-2, i.e., they are obscured but unlikely to be Compton thick. Using a local
sample of radio-selected AGN, we show that a low ratio of X-ray to radio
emission, as seen in the X-ray weakly- and non-detected samples, is correlated
with the viewing angle of the central engine, and therefore with obscuration.
Our technique can explore the proportion of obscured AGN in the distant
Universe; the results reported here for radio-excess objects are consistent
with but at the low end of the overall theoretical predictions for
Compton-thick objects.Comment: Accepted for publication in the Astrophysical Journal, 15 pages, 10
figures, 4 table
- …
