15 research outputs found
Optimisation of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction
The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable
bundles, wound in different stages, which are twisted to counter coupling loss
caused by time-changing external magnet fields. The selection of the twist
pitch lengths has major implications for the performance of the cable in the
case of strain sensitive superconductors, i.e. Nb3Sn, as the electromagnetic
and thermal contraction loads are large but also for the heat load from the AC
coupling loss. Reduction of the transverse load and warm-up cool-down
degradation can be reached by applying longer twist pitches in a particular
sequence for the sub-stages, offering a large cable transverse stiffness,
adequate axial flexibility and maximum allowed lateral strand support. Analysis
of short sample (TF conductor) data reveals that increasing the twist pitch can
lead to a gain of the effective axial compressive strain of more than 0.3 %
with practically no degradation from bending. For reduction of the coupling
loss, specific choices of the cabling twist sequence are needed with the aim to
minimize the area of linked strands and bundles that are coupled and form loops
with the applied changing magnetic field, instead of simply avoiding longer
pitches. In addition we recommend increasing the wrap coverage of the CS
conductor from 50 % to at least 70 %. The models predict significant
improvement against strain sensitivity and substantial decrease of the AC
coupling loss in Nb3Sn CICCs, but also for NbTi CICCs minimization of the
coupling loss can be achieved. Although the success of long pitches to
transverse load degradation was already demonstrated, the prediction of the
combination with low coupling loss needs to be validated by a short sample
test.Comment: to be published in Supercond Sci Techno
Error estimation in the Tcs measurement of TF conductors in the SULTAN facility
The main parameter measured in the tests of the TF conductors for the ITER machine is the current sharing temperature. In the voltmetric assessment of Tcs, the voltages are measured on the conductor jacket, due to the technical difficulties to introduce voltage taps inside the stainless steel conduit. The average voltages measured on the jacket do not exactly correspond to those that arise along the single strands, as shown by the presence of early voltages arising during the current ramp up, when the cable is still in the superconducting phase. It is therefore not trivial to evaluate the difference between the cable and jacket voltages, that gives rise to an experimental error in the measurement of Tcs. This paper reports the results of a vast simulation campaign performed with a detailed electromagnetic model of the Cable in Conduit Conductor, in which the origin and the extent of these differences have been investigated, giving an estimate for the experimental error. The impact on measurements of other sources of error such as the signal/noise ratio and the error in the temperature measurements is also reported
Magnetization and Inter-Filament Contact in HEP and ITER Bronze-Route Nb<sub>3</sub>Sn Wires
Magnetization measurements are relevant tests for the characterization of superconductors. Practically they are the only measurements that allow estimating the critical current density at low fields of low temperature superconductors, the effective filament size and the hysteresis losses. For this purpose CERN, in collaboration with the University of Geneva, has carried out magnetization measurements on five types of Nb3Sn wires: three bronze route strands used in the ITER project; one Powder In Tube (PIT) and one Internal Tin (IT) wires used for developing next generation accelerator magnets. The field dependent magnetization has been determined using three setups: a Vibrating Sample Magnetometer (VSM), a Superconducting Quantum Interference Device (SQUID) and a special system used for the production control of LHC strands. Samples of different lengths have been tested to check the different coupling between the filaments. Unexpectedly, it was found that the magnetization of the tested bronze wires was strongly dependent on the sample length. In this paper, the results, which were obtained for different type of strands and sample lengths, are reported and compared
Results of the TF conductor performance qualification samples for the ITER project
The performance of the toroidal field (TF) magnet conductors for the ITER machine are qualified by a short full-size sample (4 m) current sharing temperature (T-cs) test in the SULTAN facility at CRPP in Villigen, Switzerland, using the operating current of 68 kA and the design peak field of 11.8 T. Several samples, including at least one from each of the six ITER Domestic Agencies participating in TF conductor fabrication (China, European Union, Japan, Russia, South Korea and the United States), have been qualified by the ITER Organization after achieving T-cs values of 6.0-6.9 K, after 700-1000 electromagnetic cycles. These T-cs values exceed the ITER specification and enabled the industrial production of these long-lead items for the ITER tokamak to begin in each Domestic Agency. Some of these samples did not pass the qualification test. In this paper, we summarize the performance of the qualified samples, analyze the effect of strand performance on conductor performance, and discuss the details of the test results
