334 research outputs found

    The transcriptional landscape of endogenous retroelements delineates esophageal adenocarcinoma subtypes

    Get PDF
    Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies

    Monte Carlo Study of Relaxor Systems: A Minimum Model for Pb(In1/2_{1/2}Nb1/2_{1/2})O3_3}

    Full text link
    We examine a simple model for Pb(In1/2_{1/2}Nb1/2_{1/2})O3_3 (PIN), which includes both long-range dipole-dipole interaction and random local anisotropy. A improved algorithm optimized for long-range interaction has been applied for efficient large-scale Monte Carlo simulation. We demonstrate that the phase diagram of PIN is qualitatively reproduced by this minimum model. Some properties characteristic of relaxors such as nano-scale domain formation, slow dynamics and dispersive dielectric responses are also examined.Comment: 5 pages, 4 figure

    Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?

    Get PDF
    Application of functional imaging techniques to animal models is vital to understand pain mechanisms, but is often confounded by the need to limit movement artefacts with anaesthesia, and a focus on evoked responses rather than clinically relevant spontaneous pain and related hyperalgesia. The aim of the present study was to investigate the potential of manganese-enhanced magnetic resonance imaging (MEMRI) to measure neural responses during on-going pain that underpins hyperalgesia in pre-clinical models of nociception. As a proof of concept that MEMRI is sensitive to the neural activity of spontaneous, intermittent behaviour, we studied a separate positive control group undergoing a voluntary running wheel experiment. In the pain models, pain behaviour (weight bearing asymmetry and hindpaw withdrawal thresholds (PWTs)) was measured at baseline and following either intra-articular injection of nerve growth factor (NGF, 10 µg/50 µl; acute pain model, n=4 rats per group), or the chondrocyte toxin monosodium iodoacetate (MIA, 1 mg/50 µl; chronic model, n=8 rats per group), or control injection. Separate groups of rats underwent a voluntary wheel running protocol (n=8 rats per group). Rats were administered with paramagnetic ion Mn2+ as soluble MnCl2 over seven days (subcutaneous osmotic pump) to allow cumulative activity-dependent neural accumulation in the models of pain, or over a period of running. T1-weighted MR imaging at 7 T was performed under isoflurane anaesthesia using a receive-only rat head coil in combination with a 72 mm volume coil for excitation. The pain models resulted in weight bearing asymmetry (NGF: 20.0 ± 5.2%, MIA: 15 ± 3%), and a reduction in PWT in the MIA model (8.3 ± 1.5 g) on the final day of assessment before undergoing MR imaging. Voxel-wise and region-based analysis of MEMRI data did not identify group differences in T1 signal. However, MnCl2 accumulation in the VTA, right Ce amygdala, and left cingulate was negatively correlated with pain responses (greater differences in weight bearing), similarly MnCl2 accumulation was reduced in the VTA in line with hyperalgesia (lower PWTs), which suggests reduced regional activation as a result of the intensity and duration of pain experienced during the 7 days of MnCl2 exposure. Motor cortex T1-weighted signal increase was associated with the distance ran in the wheel running study, while no between group difference was seen. Our data suggest that on-going pain related signal changes identified using MEMRI offers a new window to study the neural underpinnings of spontaneous pain in rats

    KCNQ potassium channels modulate Wnt activity in gastro-oesophageal adenocarcinomas

    Get PDF
    Voltage-sensitive potassium channels play an important role in controlling membrane potential and ionic homeostasis in the gut and have been implicated in gastrointestinal (GI) cancers. Through large-scale analysis of 897 patients with gastro-oesophageal adenocarcinomas (GOAs) coupled with in vitro models, we find KCNQ family genes are mutated in ∼30% of patients, and play therapeutically targetable roles in GOA cancer growth. KCNQ1 and KCNQ3 mediate the WNT pathway and MYC to increase proliferation through resultant effects on cadherin junctions. This also highlights novel roles of KCNQ3 in non-excitable tissues. We also discover that activity of KCNQ3 sensitises cancer cells to existing potassium channel inhibitors and that inhibition of KCNQ activity reduces proliferation of GOA cancer cells. These findings reveal a novel and exploitable role of potassium channels in the advancement of human cancer, and highlight that supplemental treatments for GOAs may exist through KCNQ inhibitors

    Young men’s views towards the barriers and facilitators of internet-based Chlamydia trachomatis screening: a qualitative study

    Get PDF
    Background: There is a growing number of Internet-based approaches that offer young people screening for sexually transmitted infections. Objective: This paper explores young men’s views towards the barriers and facilitators of implementing an Internet-based screening approach. The study sought to consider ways in which the proposed intervention would reach and engage men across ages and socioeconomic backgrounds. Methods: This qualitative study included 15 focus groups with 60 heterosexual young men (aged 16-24 years) across central Scotland, drawn across age and socioeconomic backgrounds. Focus groups began by obtaining postcode data to allocate participants to a high/low deprivation category. Focus group discussions involved exploration of men’s knowledge of chlamydia, use of technology, and views toward Internet-based screening. Men were shown sample screening invitation letters, test kits, and existing screening websites to facilitate discussions. Transcripts from audio recordings were analyzed with "Framework Analysis". Results: Men’s Internet and technology use was heterogeneous in terms of individual practices, with greater use among older men (aged 20-24 years) than teenagers and some deprivation-related differences in use. We detail three themes related to barriers to successful implementation: acceptability, confidentiality and privacy concerns, and language, style, and content. These themes identify ways Internet-based screening approaches may fail to engage some men, such as by raising anxiety and failing to convey confidentiality. Men wanted screening websites to frame screening as a serious issue, rather than using humorous images and text. Participants were encouraged to reach a consensus within their groups on their broad design and style preferences for a screening website; this led to a set of common preferences that they believed were likely to engage men across age and deprivation groups and lead to greater screening uptake. Conclusions: The Internet provides opportunities for re-evaluating how we deliver sexual health promotion and engage young men in screening. Interventions using such technology should focus on uptake by age and socioeconomic background. Young people should be engaged as coproducers of intervention materials and websites to ensure messages and content are framed appropriately within a fast-changing environment. Doing so may go some way to addressing the overall lower levels of testing and screening among men compared with women

    The polarizability model for ferroelectricity in perovskite oxides

    Full text link
    This article reviews the polarizability model and its applications to ferroelectric perovskite oxides. The motivation for the introduction of the model is discussed and nonlinear oxygen ion polarizability effects and their lattice dynamical implementation outlined. While a large part of this work is dedicated to results obtained within the self-consistent-phonon approximation (SPA), also nonlinear solutions of the model are handled which are of interest to the physics of relaxor ferroelectrics, domain wall motions, incommensurate phase transitions. The main emphasis is to compare the results of the model with experimental data and to predict novel phenomena.Comment: 55 pages, 35 figure

    The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae

    Get PDF
    © 2014 The Authors. Published by Elsevier Ltd. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence e (http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.The peach potato aphid, Myzus persicae is a globally distributed crop pest with a host range of over 400 species including many economically important crop plants. The intensive use of insecticides to control this species over many years has led to populations that are now resistant to several classes of insecticide. Work spanning over 40 years has shown that M. persicae has a remarkable ability to evolve mechanisms that avoid or overcome the toxic effect of insecticides with at least seven independent mechanisms of resistance described in this species to date. The array of novel resistance mechanisms, including several ‘first examples’, that have evolved in this species represents an important case study for the evolution of insecticide resistance and also rapid adaptive change in insects more generally. In this review we summarise the biochemical and molecular mechanisms underlying resistance in M. persicae and the insights study of this topic has provided on how resistance evolves, the selectivity of insecticides, and the link between resistance and host plant adaptation.Peer reviewedFinal Published versio
    • …
    corecore