15 research outputs found

    Petrography, stable isotope compositions, microRaman spectroscopy, and presolar components of Roberts Massif 04133: A reduced CV3 carbonaceous chrondrite

    Get PDF
    Here, we report the mineralogy, petrography, C-N-O-stable isotope compositions, degree of disorder of organic matter, and abundances of presolar components of the chondrite Roberts Massif (RBT) 04133 using a coordinated, multitechnique approach. The results of this study are inconsistent with its initial classification as a Renazzo-like carbonaceous chondrite, and strongly support RBT 04133 being a brecciated, reduced petrologic type \u3e3.3 Vigarano-like carbonaceous (CV) chondrite. RBT 04133 shows no evidence for aqueous alteration. However, it is mildly thermally altered (up to approximately 440 °C); which is apparent in its whole-rock C and N isotopic compositions, the degree of disorder of C in insoluble organic matter, low presolar grain abundances, minor element compositions of Fe,Ni metal, chromite compositions and morphologies, and the presence of unequilibrated silicates. Sulfides within type I chondrules from RBT 04133 appear to be pre-accretionary (i.e., did not form via aqueous alteration), providing further evidence that some sulfide minerals formed prior to accretion of the CV chondrite parent body. The thin section studied contains two reduced CV3 lithologies, one of which appears to be more thermally metamorphosed, indicating that RBT 04133, like several other CV chondrites, is a breccia and thus experienced impact processing. Linear foliation of chondrules was not observed implying that RBT 04133 did not experience high velocity impacts that could lead to extensive thermal metamorphism. Presolar silicates are still present in RBT 04133, although presolar SiC grain abundances are very low, indicating that the progressive destruction or modification of presolar SiC grains begins before presolar silicate grains are completely unidentifiable

    A water–ice rich minor body from the early Solar System: The CR chondrite parent asteroid

    No full text
    To better understand the effects of aqueous alteration in the Renazzo-like carbonaceous (CR) chondrite parent asteroid, a minor body in the early Solar System, we studied the petrology and O-isotope compositions of fine-grained matrix from 14 different CR chondrites. The O-isotope compositions of matrix from Queen Alexandra Range 99177 confirm that this sample is the least aqueously altered CR chondrite, provides the best approximation of the primary anhydrous matrix, and suggests matrix is not a byproduct of chondrule formation. Matrix O-isotope compositions within individual CR chondrites are heterogeneous, varying up to ∼5‰ in both δ18O and δ17O source, as a result of the heterogeneous nature of the matrix and diverse range of aqueous alteration recorded by each sample. Aqueous alteration resulted in matrix that is progressively more 16O-depleted and Ca-carbonate rich. Due to the fine-grained nature of matrix its O-isotope composition is a more sensitive indicator of a chondrite's overall degree of aqueous alteration than whole-rock O-isotope compositions, which are typically dominated by the compositions of type I (FeO-poor) chondrule phenocrysts. Petrographic signatures correlate with the degree of aqueous alteration and the wide range of matrix O-isotope compositions indicate that some regions of the CR chondrite parent asteroid were relatively dry, while others were heavily hydrated with water. The O-isotope composition of aqueously altered matrix is consistent with asteroidal water being near Δ17O~0‰, which suggests an inner Solar System origin for the water. The diverse range of aqueous alteration recorded by a single asteroid has a range of implications for spectral studies of the asteroid belt, and the arrival of Dawn at 1 Ceres, Hayabusa-2 at 162173 1999 JU3, and OSIRIS-REx at 101955 Bennu

    Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk

    No full text
    We report on the mineralogy, petrography, and in situ measured oxygen- and magnesium-isotope compositions of eight porphyritic chondrules (seven FeO-poor and one FeO-rich) from the Renazzo-like carbonaceous (CR) chondrites Graves Nunataks 95229, Grosvenor Mountains 03116, Pecora Escarpment 91082, and Queen Alexandra Range 99177, which experienced minor aqueous alteration and very mild thermal metamorphism. We find no evidence that these processes modified the oxygen- or Al–Mg isotope systematics of chondrules in these meteorites. Olivine, low-Ca pyroxene, and plagioclase within an individual chondrule have similar O-isotope compositions, suggesting crystallization from isotopically uniform melts. The only exceptions are relict grains in two of the chondrules; these grains are 16O-enriched relative to phenocrysts of the host chondrules. Only the FeO-rich chondrule shows a resolvable excesses of 26Mg, corresponding to an inferred initial 26Al/27Al ratio [(26Al/27Al)0] of (2.5 ± 1.6) × 10−6 (±2SE). Combining these results with the previously reported Al–Mg isotope systematics of CR chondrules (Nagashima et al., 2014, Geochem. J. 48, 561), 7 of 22 chondrules (32%) measured show resolvable excesses of 26Mg; the presence of excess 26Mg does not correlate with the FeO content of chondrule silicates. In contrast, virtually all chondrules in weakly metamorphosed (petrologic type 3.0–3.1) unequilibrated ordinary chondrites (UOCs), Ornans-like carbonaceous (CO) chondrites, and the ungrouped carbonaceous chondrite Acfer 094 show resolvable excesses of 26Mg. The inferred (26Al/27Al)0 in CR chondrules with resolvable excesses of 26Mg range from (1.0 ± 0.4) × 10−6 to (6.3 ± 0.9) × 10−6, which is typically lower than (26Al/27Al)0 in the majority of chondrules from UOCs, COs, and Acfer 094. Based on the inferred (26Al/27Al)0, three populations of CR chondrules are recognized; the population characterized by low (26Al/27Al)0 (View the MathML source Ma after the formation of CAIs with the canonical 26Al/27Al ratio, although rapid accretion after formation of the major population of CR chondrules is not required by our data

    Chromium isotopic insights into the origin of chondrite parent bodies and the early terrestrial volatile depletion

    No full text
    International audienceChondrites are meteorites from undifferentiated parent bodies that provide fundamental information about early Solar System evolution and planet formation. The element Cr is highly suitable for deciphering both the timing of formation and the origin of planetary building blocks because it records both radiogenic contributions from 53Mn-53Cr decay and variable nucleosynthetic contributions from the stable 54Cr nuclide. Here, we report high-precision measurements of the mass-independent Cr isotope compositions (ε53Cr and ε54Cr) of chondrites (including all carbonaceous chondrites groups) and terrestrial samples using for the first time a multi-collection inductively-coupled-plasma mass-spectrometer to better understand the formation histories and genetic relationships between chondrite parent bodies. With our comprehensive dataset, the order of decreasing ε54Cr (per ten thousand deviation of the 54Cr/52Cr ratio relative to a terrestrial standard) values amongst the carbonaceous chondrites is updated to CI = CH ≥ CB ≥ CR ≥ CM ≈ CV ≈ CO ≥ CK > EC > OC. Chondrites from CO, CV, CR, CM and CB groups show intra-group ε54Cr heterogeneities that may result from sample heterogeneity and/or heterogeneous accretion of their parent bodies. Resolvable ε54Cr (with 2SE uncertainty) differences between CV and CK chondrites rule out an origin from a common parent body or reservoir as has previously been suggested. The CM and CO chondrites share common ε54Cr characteristics, which suggests their parent bodies may have accreted their components in similar proportions. The CB and CH chondrites have low-Mn/Cr ratios and similar ε53Cr values to the CI chondrites, invalidating them as anchors for a bulk 53Mn-53Cr isochron for carbonaceous chondrites. Bulk Earth has a ε53Cr value that is lower than the average of chondrites, including enstatite chondrites. This depletion may constrain the timing of volatile loss from the Earth or its precursors to be within the first million years of Solar System formation and is incompatible with Earth's accretion via any of the known chondrite groups as main contributors, including enstatite chondrites

    Krotite, CaAl_2O_4, a new refractory mineral from the NWA 1934 meteorite

    No full text
    Krotite, CaAl_2O_4, occurs as the dominant phase in an unusual Ca-,Al-rich refractory inclusion from the NWA 1934 CV3 carbonaceous chondrite. Krotite occupies the central and mantle portions of the inclusion along with minor perovskite, gehlenite, hercynite, and Cl-bearing mayenite, and trace hexamolybdenum. A layered rim surrounds the krotite-bearing regions, consisting from inside to outside of grossite, mixed hibonite, and spinel, then gehlenite with an outermost layer composed of Al-rich diopside. Krotite was identified by XRD, SEM-EBSD, micro-Raman, and electron microprobe. The mean chemical composition determined by electron microprobe analysis of krotite is (wt%) Al_2O_3 63.50, CaO 35.73, sum 99.23, with an empirical formula calculated on the basis of 4 O atoms of Ca_(1.02)Al_(1.99)O_4. Single-crystal XRD reveals that krotite is monoclinic, P2_1/n; a = 8.6996(3), b = 8.0994(3), c = 15.217(1) Å, β = 90.188(6), and Z = 12. It has a stuffed tridymite structure, which was refined from single-crystal data to R_1 = 0.0161 for 1014 F_o > 4σF reflections. Krotite is colorless and transparent with a vitreous luster and white streak. Mohs hardness is ~6½. The mineral is brittle, with a conchoidal fracture. The calculated density is 2.94 g/cm3. Krotite is biaxial (–), α = 1.608(2), β = 1.629(2), γ = 1.635(2) (white light), 2V_(meas) = 54.4(5)°, and 2V_(calc) = 55.6°. No dispersion was observed. The optical orientation is X = b; Y ≈ a; Z ≈ c. Pleochroism is colorless to very pale gray, X > Y = Z. Krotite is a low-pressure CaAl_2O_4 mineral, likely formed by condensation or crystallization from a melt in the solar nebula. This is the first reported occurrence of krotite in nature and it is one of the earliest minerals formed in the solar system

    Chromium Stable Isotope Panorama of Chondrites and Implications for Earth Early Accretion

    No full text
    International audienceWe investigated the stable isotope fractionation of chromium (Cr) for a panorama of chondrites, including EH and EL enstatite chondrites and their chondrules and different phases (by acid leaching). We observed that chondrites have heterogeneous δ 53Cr values (per mil deviation of the 53Cr/52Cr from the NIST SRM 979 standard), which we suggest reflect different physical conditions in the different chondrite accretion regions. Chondrules from a primitive EH3 chondrite (SAH 97096) possess isotopically heavier Cr relative to their host bulk chondrite, which may be caused by Cr evaporation in a reduced chondrule-forming region of the protoplanetary disk. Enstatite chondrites show a range of bulk δ 53Cr values that likely result from variable mixing of isotopically different sulfide-silicate-metal phases. The bulk silicate Earth (δ 53Cr = -0.12 ± 0.02‰, 2SE) has a lighter Cr stable isotope composition compared to the average δ 53Cr value of enstatite chondrites (-0.05 ± 0.02‰, 2SE, when two samples out of 19 are excluded). If the bulk Earth originally had a Cr isotopic composition that was similar to the average enstatite chondrites, this Cr isotope difference may be caused by evaporation under equilibrium conditions from magma oceans on Earth or its planetesimal building blocks, as previously suggested to explain the magnesium and silicon isotope differences between Earth and enstatite chondrites. Alternatively, chemical differences between Earth and enstatite chondrite can result from thermal processes in the solar nebula and the enstatite chondrite-Earth, which would also have changed the Cr isotopic composition of Earth and enstatite chondrite parent body precursors

    The Meteoritical Bulletin, No. 111

    No full text
    Abstract Meteoritical Bulletin 111 contains the 3094 meteorites approved by the Nomenclature Committee of the Meteoritical Society in 2022. It includes 11 falls (Antonin, Botohilitano, Cranfield, Golden, Great Salt Lake, Longde, Msied, Ponggo, Qiquanhu, Tiglit, Traspena), with 2533 ordinary chondrites, 165 HED, 123 carbonaceous chondrites (including 4 ungrouped), 82 lunar meteorites, 28 Rumuruti chondrites, 27 iron meteorites, 23 ureilites, 22 mesosiderites, 22 Martian meteorites, 21 primitive achondrites (one ungrouped), 17 ungrouped achondrites, 13 pallasites, 7 enstatite achondrites, 6 enstatite chondrites, and 5 angrites. Of the meteorites classified in 2022, 1787 were from Antarctica, 1078 from Africa, 180 from South America, 34 from Asia, 6 from North America, 4 from Europe, and 1 from Oceania
    corecore