6 research outputs found

    Exploring charge transport properties and functionality of molecule-nanoparticle ensembles

    Get PDF
    For more than 65 years, scientists have been fascinated by the idea to miniaturize electrical circuits toward the smallest length scales. One particular way is inspired by nature itself, specifically to assemble electrical components and switches from atoms and molecules. The molecules typically used have dimensions of the scale of a few nanometers (1 nanometer = 0,000000001 meter). The scientific research area that represents the study of electrical currents through molecules is called "molecular charge transport" or "molecular electronics". In this thesis, I have performed fundamental research on charge transport through various molecules. Specifically, I have investigated a special type of molecule that has the ability to change its spin state. To test these functional molecules, I have used a more robust type of molecular device that enables me to bridge the size gap mentioned above. This thesis has led to two important new insights. First, the properties of a switchable molecular device can be strongly enhanced artificially by making use of a charge transport mechanism called multiple inelastic cotunneling. Second, we show that the spin transition phenomenon can take place in a molecular-nanoparticle ensemble.Quantum Matter and Optic

    The influence of molecular mobility on the properties of networks of gold nanoparticles and organic ligands

    Get PDF
    We prepare and investigate two-dimensional (2D) single-layer arrays and multilayered networks of gold nanoparticles derivatized with conjugated hetero-aromatic molecules, i.e., S-(4-{[2,6-bipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)thiolate (herein S-BPP), as capping ligands. These structures are fabricated by a combination of self-assembly and microcontact printing techniques, and are characterized by electron microscopy, UV–visible spectroscopy and Raman spectroscopy. Selective binding of the S-BPP molecules to the gold nanoparticles through Au–S bonds is found, with no evidence for the formation of N–Au bonds between the pyridine or pyrazole groups of BPP and the gold surface. Subtle, but significant shifts with temperature of specific Raman S-BPP modes are also observed. We attribute these to dynamic changes in the orientation and/or increased mobility of the molecules on the gold nanoparticle facets. As for their conductance, the temperature-dependence for S-BPP networks differs significantly from standard alkanethiol-capped networks, especially above 220 K. Relating the latter two observations, we propose that dynamic changes in the molecular layers effectively lower the molecular tunnel barrier for BPP-based arrays at higher temperatures

    Formation of nematic liquid crystals of sterically stabilized layered double hydroxide platelets

    No full text
    Colloidal platelets of hydrotalcite, a layered double hydroxide, have been prepared by coprecipitation at pH 11−12 of magnesium nitrate and aluminum nitrate at two different magnesium to aluminum ratios. Changing the temperature and ionic strength during hydrothermal treatment, the platelets were tailored to different sizes and aspect ratios. Amino-modified polyisobutylene molecules were grafted onto the platelets following a convenient new route involving freeze-drying. Organic dispersions in toluene were prepared of the particles with the largest size and highest aspect ratio. The colloidal dispersions prepared in this way showed isotropic−nematic phase transitions above a limiting concentration in a matter of days. The number density at the transition and the width of the biphasic region were determined and compared to theory. The orientation of the platelets in nematic droplets (tactoids) and at the isotropic−nematic interface were analyzed by polarization microscopy. It was observed that sedimentation induces a nematic layer in samples that are below the limiting concentration for isotropic−nematic phase separation. No nematic phase was observed in the initial aqueous suspensions of the ungrafted particles

    Enhancing CO2 plasma conversion using metal grid catalysts

    No full text
    The synergy between catalysis and plasma chemistry often enhances the yield of chemical reactions in plasma-driven reactors. In the case of CO2 splitting into CO and O2, no positive synergistic effect was observed in earlier studies with plasma reactors, except for dielectric barrier discharges, that do not have a high yield and a high efficiency. Here, we demonstrate that introducing metal meshes into radio frequency-driven plasma reactors increases the relative reaction yield by 20%–50%, while supported metal oxide catalysts in the same setups have no effect. We attribute this to the double role of the metal mesh, which acts both as a catalyst for direct CO2 dissociation as well as for oxygen recombination
    corecore