185 research outputs found

    New Implications on Genomic Adaptation Derived from the Helicobacter pylori Genome Comparison

    Get PDF
    BACKGROUND: Helicobacter pylori has a reduced genome and lives in a tough environment for long-term persistence. It evolved with its particular characteristics for biological adaptation. Because several H. pylori genome sequences are available, comparative analysis could help to better understand genomic adaptation of this particular bacterium. PRINCIPAL FINDINGS: We analyzed nine H. pylori genomes with emphasis on microevolution from a different perspective. Inversion was an important factor to shape the genome structure. Illegitimate recombination not only led to genomic inversion but also inverted fragment duplication, both of which contributed to the creation of new genes and gene family, and further, homological recombination contributed to events of inversion. Based on the information of genomic rearrangement, the first genome scaffold structure of H. pylori last common ancestor was produced. The core genome consists of 1186 genes, of which 22 genes could particularly adapt to human stomach niche. H. pylori contains high proportion of pseudogenes whose genesis was principally caused by homopolynucleotide (HPN) mutations. Such mutations are reversible and facilitate the control of gene expression through the change of DNA structure. The reversible mutations and a quasi-panmictic feature could allow such genes or gene fragments frequently transferred within or between populations. Hence, pseudogenes could be a reservoir of adaptation materials and the HPN mutations could be favorable to H. pylori adaptation, leading to HPN accumulation on the genomes, which corresponds to a special feature of Helicobacter species: extremely high HPN composition of genome. CONCLUSION: Our research demonstrated that both genome content and structure of H. pylori have been highly adapted to its particular life style

    Aggregated a-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons

    Get PDF
    α-Synuclein becomes misfolded and aggregated upon damage by various factors, for example, by reactive oxygen species. These aggregated forms have been proposed to have differential toxicities and their interaction with mitochondria may cause dysfunction within this organelle that contributes to the pathogenesis of Parkinson’s disease (PD). In particular, the association of α-synuclein with mitochondria occurs through interaction with mitochondrial complex I and importantly defects of this protein have been linked to the pathogenesis of PD. Therefore, we investigated the relationship between aggregated α-synuclein and mitochondrial dysfunction, and the consequences of this interaction on cell survival. To do this, we studied the effects of α-synuclein on cybrid cell lines harbouring mutations in either mitochondrial complex I or IV. We found that aggregated α-synuclein inhibited mitochondrial complex I in control and complex IV-deficient cells. However, when aggregated α-synuclein was applied to complex I-deficient cells, there was no additional inhibition of mitochondrial function or increase in cell death. This would suggest that as complex I-deficient cells have already adapted to their mitochondrial defect, the subsequent toxic effects of α-synuclein are reduced

    Short and long term treatment of asthma with intravenous nutrients

    Get PDF
    BACKGROUND: Asthma is an increasing problem in this country and others. Although medications for the treatment of asthma abound and are improving, there are inherent risks and side effects with all of them. Intravenous magnesium has been employed in the treatment of acute asthma, but its use has not become universal, nor has it been studied for the treatment of chronic asthma. It is known to be a safe drug with minimal side effects. In this study, the author investigates the use of magnesium and other nutrients in the treatment of both acute and chronic asthma. METHODS: In this non-blinded outcome study, following informed consent, forty-three (43) randomly selected volunteer patients with both acute and chronic asthma were treated with IV infusions described herein. All patients were observed with spirometry 10 minutes post-infusion; two sub-groups of patients were also observed after multiple infusions over a short period of time (less than one month) and a longer period of time (average 5.8 months). Pulmonary function was analyzed by spirometric testing with pre- and post-infusion spirometric measurements with the pre/post group. For longer term (Trend) patients, baseline spirometry measurements were compared to spirometry measurements after patients had received multiple infusions over a period of time. Eight (8) patients were measured for both pre/post and Trend data. RESULTS: The 38 pre-infusion/post-infusion patients with acute and chronic asthma demonstrated an overall average improvement (percentage improvement in percent predicted) of 45%. The 13 patients measured for improvement over time (Trend data, average duration 5.82 months), demonstrated an overall average improvement (percentage improvement in percent predicted) of 57%. Of the 13 patients in the multiple infusion group, 9 patients who received longer-term therapy (average duration of 12.58 months) for chronic asthma demonstrated an overall average improvement of 95% (percentage improvement in percent predicted). CONCLUSION: The use of intravenous treatment with multiple nutrients, including magnesium, for acute and chronic asthma may be of considerable benefit. Pulmonary function improved progressively the longer patients received treatment

    The Diagnostic Sensitivity of Dengue Rapid Test Assays Is Significantly Enhanced by Using a Combined Antigen and Antibody Testing Approach

    Get PDF
    Dengue is a serious public health concern with around 3 billion people at risk of infection. Severe forms of the infection can be fatal and with no licensed vaccine or effective therapeutic currently available, early detection is important to assist with the clinical management of symptoms. Isolation of the virus and the detection of viral RNA using RT-PCR are commonly used methods for early diagnosis but are time-consuming, expensive and require skilled operation. Rapid immunochromatographic tests (ICT) are relatively simple, inexpensive and easy to perform at or near the point of care. Here, we report on the clinical performance of a new rapid ICT for the non-structural protein 1 (NS1) of dengue virus, a marker of acute infection. At two clinical study sites, NS1 was detected in 60–70% of laboratory-confirmed dengue cases and specificity of the test was >95%. We have also shown that a combined testing approach for both circulating NS1 antigen and antibody responses to the glycoprotein E of the virus can significantly improve diagnostic sensitivity compared to the detection of NS1 alone. Importantly, the combined antigen and antibody testing approach also provides an expanded window of detection from as early as day 1 post-onset of illness

    The Congenital Cataract-Linked G61C Mutation Destabilizes γD-Crystallin and Promotes Non-Native Aggregation

    Get PDF
    γD-crystallin is one of the major structural proteins in human eye lens. The solubility and stability of γD-crystallin play a crucial role in maintaining the optical properties of the lens during the life span of an individual. Previous study has shown that the inherited mutation G61C results in autosomal dominant congenital cataract. In this research, we studied the effects of the G61C mutation on γD-crystallin structure, stability and aggregation via biophysical methods. CD, intrinsic and extrinsic fluorescence spectroscopy indicated that the G61C mutation did not affect the native structure of γD-crystallin. The stability of γD-crystallin against heat- or GdnHCl-induced denaturation was significantly decreased by the mutation, while no influence was observed on the acid-induced unfolding. The mutation mainly affected the transition from the native state to the intermediate but not that from the intermediate to the unfolded or aggregated states. At high temperatures, both proteins were able to form aggregates, and the aggregation of the mutant was much more serious than the wild type protein at the same temperature. At body temperature and acidic conditions, the mutant was more prone to form amyloid-like fibrils. The aggregation-prone property of the mutant was not altered by the addition of reductive reagent. These results suggested that the decrease in protein stability followed by aggregation-prone property might be the major cause in the hereditary cataract induced by the G61C mutation
    corecore