845 research outputs found

    Symmetry dependence of phonon lineshapes in superconductors with anisotropic gaps

    Full text link
    The temperature dependence below TcT_{c} of the lineshape of optical phonons of different symmetry as seen in Raman scattering is investigated for superconductors with anisotropic energy gaps. It is shown that the symmetry of the electron-phonon vertex produces non-trivial couplings to an anisotropic energy gap which leads to unique changes in the phonon lineshape for phonons of different symmetry. The phonon lineshape is calculated in detail for B1gB_{1g} and A1gA_{1g} phonons in a superconductor with dx2−y2d_{x^{2}-y^{2}} pairing symmetry. The role of satellite peaks generated by the electron-phonon coupling are also addressed. The theory accounts for the substantial phonon narrowing of the B1gB_{1g} phonon, while narrowing of the A1gA_{1g} phonon which is indistinguishable from the normal state is shown, in agreement with recent measurements on BSCCO.Comment: 15 pages (3 Figures available upon request), Revtex, 1

    Critical Current Peaks at 3BΦ3B_{\Phi} in Superconductors with Columnar Defects: Recrystalizing the Interstitial Glass

    Full text link
    The role of commensurability and the interplay of correlated disorder and interactions on vortex dynamics in the presence of columnar pins is studied via molecular dynamics simulations. Simulations of dynamics reveal substantial caging effects and a non-monotonic dependence of the critical current with enhancements near integer values of the matching field BÏ•B_{\phi} and 3BÏ•3B_{\phi} in agreement with experiments on the cuprates. We find qualitative differences in the phase diagram for small and large values of the matching field.Comment: 5 pages, 4 figures (3 color

    Electronic Raman scattering of Tl-2223 and the symmetry of the supercon- ducting gap

    Full text link
    Single crystalline Tl2Ba2Ca2Cu3O10 was studied using electronic Raman scattering. The renormalization of the scattering continuum was investigated as a function of the scattering geometry to determine the superconducting energy gap 2Delta(k). The A1g- and B2g-symmetry component show a linear frequency behaviour of the scattering intensity with a peak related to the energy gap, while the B1g-symmetry component shows a characteristic behaviour at higher frequencies. The observed frequency dependencies are consistent with a dx^2-y^2-wave symmetry of the gap and yield a ratio of 2Delta/k_BT_c=7.4. With the polarization of the scattered and incident light either parallel or perpendicular to the CuO2-planes a strong anisotropy due to the layered structure was detected, which indicates an almost 2 dimensional behaviour of this system.Comment: 2 pages, Postscript-file including 2 figures. Accepted for publication in the Proceedings of the M^2SHTSC IV Conference, Grenoble (France), 5-9 July 1994. Proceedings to be published in Physica C. Contact address: [email protected]

    Comment on "Superconducting gap anisotropy vs. doping level in high-T_c cuprates" by C. Kendziora et al, PRL 77, 727 (1996)

    Get PDF
    In a recent paper Kendziora et al concluded that the superconducting gap in overdoped Bi-2212 is isotropic. From data obtained from electronic Raman scattering measurements, their conclusion was based on the observation that pair breaking peaks occured at approximately the same frequency in different scattering geometries and that the normalized scattering intensity at low energies was strongly depleted. We discuss a different interpretation of the raw data and present new data which is consistent with a strongly anisotropic gap with nodes. The spectra can be successfully described by a model for Raman scattering in a d_{x^{2}-y^{2}} superconductor with spin fluctuations and impurity scattering included.Comment: 1 page revtex plus 1 postscript figur

    Neutron Scattering and the B_{1g} Phonon in the Cuprates

    Full text link
    The momentum dependent lineshape of the out-of-phase oxygen vibration as measured in recent neutron scattering measurements is investigated. Starting from a microscopic coupling of the phonon vibration to a local crystal field, the phonon lineshift and broadening is calculated as a function of transfered momentum in the superconducting state of YBa2_{2}Cu3_{3}O7_{7}. It is shown that the anisotropy of the density of states, superconducting energy gap, and the electron-phonon coupling are all crucial in order to explain these experiments.Comment: new figures and discussio

    Quantum Dynamics of the Hubbard-Holstein Model in Equilibrium and Non-Equilibrium: Application to Pump-Probe Phenomena

    Full text link
    The spectral response and physical features of the 2D Hubbard-Holstein model are calculated both in equilibrium at zero and low chemical dopings, and after an ultra short powerful light pulse, in undoped systems. At equilibrium and at strong charge-lattice couplings, the optical conductivity reveals a 3-peak structure in agreement with experimental observations. After an ultra short pulse and at nonzero electron-phonon interaction, phonon and spin subsystems oscillate with the phonon period Tph≈80T_{ph} \approx 80 fs. The decay time of the phonon oscillations is about 150-200 fs, similar to the relaxation time of the charge system. We propose a criterion for observing these oscillations in high TcT_c compounds: the time span of the pump light pulse τpump\tau_{pump} has to be shorter than the phonon oscillation period TphT_{ph}.Comment: 4 pages, 4 figure

    Calculation of overdamped c-axis charge dynamics and the coupling to polar phonons in cuprate superconductors

    Full text link
    In our recent paper we presented empirical evidences suggesting that electrons in cuprate superconductors are strongly coupled to unscreened c-axis polar phonons. In the overdoped regime the c-axis metallizes and we present here simple theoretical arguments demonstrating that the observed effect of the metallic c-axis screening on the polar electron-phonon coupling is consistent with a strongly overdamped c-axis charge dynamics in the optimally doped system, becoming less dissipative in the overdoped regime.Comment: 6 pages, 1 figure. to be published in Phys. Rev.

    The Pairing Mechanism in HTSC investigated by Electronic Raman Scattering

    Full text link
    By means of electronic Raman scattering we investigated the symmetry of the energy gap Delta(k), its temperature dependence and its variation with doping of well characterized Bi2Sr2CaCu2O8+delta single crystals. The oxygen content delta was varied between the under- and the overdoped regime by subsequently annealing the same single crystal in Ar and O2, respectively. The symmetry analysis of the polarized electronic Raman scattering is consistent with a d_x^2-y^2-wave symmetry of the energy gap in both regimes. The gap ratio 2Delta_max/k_BT_c and its temperature dependence changes with doping similar to predictions of theories based on paramagnon coupling.Comment: 3 pages, LaTeX, 2 ps figures available on request to [email protected]
    • …
    corecore