10 research outputs found

    Amyloid-beta modulates the association between neurofilament light chain and brain atrophy in Alzheimer’s disease

    Get PDF
    Neurofilament light chain (NFL) measurement has been gaining strong support as a clinically useful neuronal injury biomarker for various neurodegenerative conditions. However, in Alzheimer’s disease (AD), its reflection on regional neuronal injury in the context of amyloid pathology remains unclear. This study included 83 cognitively normal (CN), 160 mild cognitive impairment (MCI), and 73 AD subjects who were further classified based on amyloid-beta (Aβ) status as positive or negative (Aβ+ vs Aβ−). In addition, 13 rats (5 wild type and 8 McGill-R-Thy1-APP transgenic (Tg)) were examined. In the clinical study, reduced precuneus/posterior cingulate cortex and hippocampal grey matter density were significantly associated with increased NFL concentrations in cerebrospinal fluid (CSF) or plasma in MCI Aβ+ and AD Aβ+. Moreover, AD Aβ+ showed a significant association between the reduced grey matter density in the AD-vulnerable regions and increased NFL concentrations in CSF or plasma. Congruently, Tg rats recapitulated and validated the association between CSF NFL and grey matter density in the parietotemporal cortex, entorhinal cortex, and hippocampus in the presence of amyloid pathology. In conclusion, reduced grey matter density and elevated NFL concentrations in CSF and plasma are associated in AD-vulnerable regions in the presence of amyloid positivity in the AD clinical spectrum and amyloid Tg rat model. These findings further support the NFL as a neuronal injury biomarker in the research framework of AD biomarker classification and for the evaluation of therapeutic efficacy in clinical trials

    Individual variation in brain structural-cognition relationships in aging

    Get PDF
    The sources of inter- and intra-individual variability in age-related cognitive decline remain poorly understood. We examined the association between 20-year trajectories of cognitive decline and multimodal brain structure and morphology in older age. We used the Whitehall II Study, an extensively characterised cohort with 3T brain magnetic resonance images acquired at older age (mean age = 69.52± 4.9) and 5 repeated cognitive performance assessments between mid-life (mean age = 53.2 ±4.9 years) and late-life (mean age = 67.7 ±4.9). Using non-negative matrix factorization, we identified 10 brain components integrating cortical thickness, surface area, fractional anisotropy, and mean and radial diffusivities. We observed two latent variables describing distinct brain-cognition associations. The first describes variations in 5 structural components associated with low mid-life performance across multiple cognitive domains, decline in reasoning, but maintenance of fluency abilities. The second describes variations in 6 structural components associated with low mid-life performance in fluency and memory, but retention of multiple abilities. Expression of latent variables predicts future cognition 3.2 years later (mean age = 70.87 ±4.9). This data-driven approach highlights brain-cognition relationships wherein individuals express both decline and maintenance in function across cognitive domains and in brain structural features

    BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods.

    No full text
    The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms

    Modulation of van der Waals and classical epitaxy induced by strain at the Si step edges in GeSbTe alloys

    Get PDF
    The present work displays a route to design strain gradients at the interface between substrate and van der Waals bonded materials. The latter are expected to grow decoupled from the substrates and fully relaxed and thus, by definition, incompatible with conventional strain engineering. By the usage of passivated vicinal surfaces we are able to insert strain at step edges of layered chalcogenides, as demonstrated by the tilt of the epilayer in the growth direction with respect of the substrate orientation. The interplay between classical and van der Waals epitaxy can be modulated with an accurate choice of the substrate miscut. High quality crystalline GexSb2Te3+x with almost Ge1Sb2Te4 composition and improved degree of ordering of the vacancy layers is thus obtained by epitaxial growth of layers on 3-4° stepped Si substrates. These results highlight that it is possible to build and control strain in van der Waals systems, therefore opening up new prospects for the functionalization of epilayers by directly employing vicinal substrates

    Brain charts for the human lifespan

    Get PDF
    Over the past 25 years, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, there are no reference standards against which to anchor measures of individual differences in brain morphology, in contrast to growth charts for traits such as height and weight. Here, we built an interactive online resource ( www.brainchart.io ) to quantify individual differences in brain structure from any current or future magnetic resonance imaging (MRI) study, against models of expected age-related trends. With the goal of basing these on the largest and most inclusive dataset, we aggregated MRI data spanning 115 days post-conception through 100 postnatal years, totaling 122,123 scans from 100,071 individuals in over 100 studies across 6 continents. When quantified as centile scores relative to the reference models, individual differences show high validity with non-MRI brain growth estimates and high stability across longitudinal assessment. Centile scores helped identify previously unreported brain developmental milestones and demonstrated increased genetic heritability compared to non-centiled MRI phenotypes. Crucially for the study of brain disorders, centile scores provide a standardised and interpretable measure of deviation that reveals new patterns of neuroanatomical differences across neurological and psychiatric disorders emerging during development and ageing. In sum, brain charts for the human lifespan are an essential first step towards robust, standardised quantification of individual variation and for characterizing deviation from age-related trends. Our global collaborative study provides such an anchorpoint for basic neuroimaging research and will facilitate implementation of research-based standards in clinical studies

    Publisher Correction: Brain charts for the human lifespan.

    Get PDF
    In the version of this article initially published, there were errors in the affiliations for K. Im (missing affiliation, Division of Newborn Medicine and Neuroradiology, Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA), J. Lerch (missing affiliation, Mouse Imaging Centre, Toronto, Ontario, Canada), S. Villeneuve and X. N. Zuo (incorrect affiliation numbers listed), H. Yun (missing affiliation, Division of Newborn Medicine and Neuroradiology, Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA), and H. J. Zar (extra affiliation shown). In addition, the affiliation numbers for all authors listed in the consortium membership section were incorrect by 1–3 digits. The errors have been corrected in the HTML and PDF versions of the article

    Anthropological Perspectives on the Social Biology of Alcohol: An Introduction to the Literature

    No full text

    Effect of Alcohol on Lipids and Lipoproteins in Relation to Atherosclerosis

    No full text
    corecore