1,039 research outputs found
Gravitationally enhanced depolarization of ultracold neutrons in magnetic-field gradients
Trapped ultracold neutrons (UCN) have for many years been the mainstay of experiments to search for the electric dipole moment (EDM) of the neutron, a critical parameter in constraining scenarios of new physics beyond the Standard Model. Because their energies are so low, UCN preferentially populate the lower region of their physical enclosure, and do not sample uniformly the ambient magnetic field throughout the storage volume. This leads to a substantial increase in the rate of depolarization, as well as to shifts in the measured frequency of the stored neutrons. Consequences for EDM measurements are discussed
Determination of polarized parton distribution functions with recent data on polarization asymmetries
Global analysis has been performed within the next-to-leading order in
Quantum Chromodynamics (QCD) to determine polarized parton distributions with
new experimental data in spin asymmetries. The new data set includes JLab,
HERMES, and COMPASS measurements on spin asymmetry A_1 for the neutron and
deuteron in lepton scattering. Our new analysis also utilizes the double-spin
asymmetry for pi^0 production in polarized pp collisions, A_{LL}^{pi^0},
measured by the PHENIX collaboration. Because of these new data, uncertainties
of the polarized PDFs are reduced. In particular, the JLab, HERMES, and COMPASS
measurements are valuable for determining Delta d_v(x) at large x and Delta
qbar(x) at x~0.1. The PHENIX pi^0 data significantly reduce the uncertainty of
Delta g(x). Furthermore, we discuss a possible constraint on Delta g(x) at
large x by using the HERMES data on g_1^d in comparison with the COMPASS ones
at x~0.05.Comment: 11 pages, REVTeX, 13 eps files, Phys. Rev. D in pres
A comparative study of the neutrino-nucleon cross section at ultra high energies
The high energy neutrino cross section is a crucial ingredient in the
calculation of the event rate in high energy neutrino telescopes. Currently
there are several approaches which predict different behaviours for its
magnitude for ultrahigh energies. In this paper we present a comparison between
the predictions based on linear DGLAP dynamics, non-linear QCD and in the
imposition of a Froissart-like behaviour at high energies. In particular, we
update the predictions based on the Color Glass Condensate, presenting for the
first time the results for using the solution of the running
coupling Balitsky-Kovchegov equation. Our results demonstrate that the current
theoretical uncertainty for the neutrino-nucleon cross section reaches a factor
three for neutrinos energies around GeV and increases to a factor
five for GeV.Comment: 6 pages, 3 figure
The Color Dipole Picture of low-x DIS: Model-Independent and Model-Dependent Results
We present a detailed examination of the color-dipole picture (CDP) of
low- deep inelastic scattering. We discriminate model-independent results,
not depending on a specific parameterization of the dipole cross section, from
model-dependent ones. The model-independent results include the ratio of the
longitudinal to the transverse photoabsorption cross section at large , or
equivalently the ratio of the longitudinal to the unpolarized proton structure
function, , as well as the low- scaling
behavior of the total photoabsorption cross section as for
, and as for .
Here, denotes the low- scaling variable, with being
the saturation scale. The model-independent analysis also implies
at any for asymptotically
large energy, . Consistency with pQCD evolution determines the underlying
gluon distribution and the numerical value of in the expression
for the saturation scale, . In the
model-dependent analysis, by restricting the mass of the actively contributing
fluctuations by an energy-dependent upper bound, we extend the
validity of the color-dipole picture to . The
theoretical results agree with the world data on DIS for .Comment: 77 pages, 30 figure
Fully Unintegrated Parton Correlation Functions and Factorization in Lowest Order Hard Scattering
Motivated by the need to correct the potentially large kinematic errors in
approximations used in the standard formulation of perturbative QCD, we
reformulate deeply inelastic lepton-proton scattering in terms of gauge
invariant, universal parton correlation functions which depend on all
components of parton four-momentum. Currently, different hard QCD processes are
described by very different perturbative formalisms, each relying on its own
set of kinematical approximations. In this paper we show how to set up
formalism that avoids approximations on final-state momenta, and thus has a
very general domain of applicability. The use of exact kinematics introduces a
number of significant conceptual shifts already at leading order, and tightly
constrains the formalism. We show how to define parton correlation functions
that generalize the concepts of parton density, fragmentation function, and
soft factor. After setting up a general subtraction formalism, we obtain a
factorization theorem. To avoid complications with Ward identities the full
derivation is restricted to abelian gauge theories; even so the resulting
structure is highly suggestive of a similar treatment for non-abelian gauge
theories.Comment: 44 pages, 69 figures typos fixed, clarifications and second appendix
adde
Small-x QCD studies with CMS at the LHC
The capabilities of the CMS experiment to study the low-x parton structure
and QCD evolution in the proton and the nucleus at LHC energies are presented
through four different measurements, to be carried out in Pb-Pb at sqrt(s_NN) =
5.5 TeV: (i) the charged hadron rapidity density and (ii) the
ultraperipheral (photo)production of Upsilon; and in p-p at sqrt(s) = 14 TeV:
(iii) inclusive forward jets and (iv) Mueller-Navelet dijets (separated by
8).Comment: Quark Matter'06 Proceedings. To appear in J.Phys.
Electroproduction, photoproduction, and inverse electroproduction of pions in the first resonance region
Methods are set forth for determining the hadron electromagnetic structure in
the sub--threshold timelike region of the virtual-photon ``mass'' and
for investigating the nucleon weak structure in the spacelike region from
experimental data on the process at low energies. These
methods are formulated using the unified description of photoproduction,
electroproduction, and inverse electroproduction of pions in the first
resonance region in the framework of the dispersion-relation model and on the
basis of the model-independent properties of inverse electroproduction.
Applications of these methods are also shown.Comment: The revised published version; Revtex4, 18 pages, 6 figure
Dilepton production in proton-proton collisions at BEVALAC energies
The dilepton production in elementary reactions at
BEVALAC energies GeV is investigated. The calculations
include direct decays of the vector mesons , , and , Dalitz decays of the -, -, -, -, and -mesons, and of the baryon resonances
. The subthreshold vector meson production cross sections in
collisions are treated in a way sufficient to avoid double counting with the
inclusive vector meson production. The vector meson dominance model for the
transition form factors of the resonance Dalitz decays is
used in an extended form to ensure correct asymptotics which are in agreement
with the quark counting rules. Such a modification gives an unified and
consistent description of both radiative decays and meson decays.
The effect of multiple pion production on the experimental efficiency for the
detection of the dilepton pairs is studied. We find the dilepton yield in
reasonable agreement with the experimental data for the set of intermediate
energies whereas at the highest energy GeV the number of
dilepton pairs is likely to be overestimated experimentally in the mass range
MeV.Comment: 25 pages (IOP style), 5 figures, revised manuscript accepted for
publication in JP
Assessing gender mainstreaming in the education sector: depoliticised technique or a step towards women's rights and gender equality?
In 1995 the Beijing Conference on Women identified gender mainstreaming as a key area for action. Policies to effect gender mainstreaming have since been widely adopted. This special issue of Compare looks at research on how gender mainstreaming has been used in government education departments, schools, higher education institutions, international agencies and NGOs .1 In this introduction we first provide a brief history of the emergence of gender mainstreaming and review changing definitions of the term. In the process we outline some policy initiatives that have attempted to mainstream gender and consider some difficulties with putting ideas into practice, particularly the tensions between a technical and transformative interpretations . Much of the literature about experiences with gender mainstreaming tends to look at organizational processes and not any specificities of a particular social sector. However, in our second section, we are concerned to explore whether institutional forms and particular actions associated with education give gender mainstreaming in education sites some distinctive features. In our last section we consider some of the debates about global and local negotiations in discussions of gender policy and education and the light this throws on gender mainstreaming. In so doing, we place the articles that follow in relation to contestations over ownership, political economy, the form and content of education practice and the social complexity of gender equality
- …