2,326 research outputs found

    Genetic and cellular sensitivity of Caenorhabditis elegans to the chemotherapeutic agent cisplatin

    Get PDF
    Cisplatin and derivatives are commonly used as chemotherapeutic agents. Although the cytotoxic action of cisplatin on cancer cells is very efficient, clinical oncologists need to deal with two major difficulties, namely the onset of resistance to the drug and the cytotoxic effect in patients. Here, we used Caenorhabditis elegans to investigate factors influencing the response to cisplatin in multicellular organisms. In this hermaphroditic model organism, we observed that sperm failure is a major cause of cisplatin-induced infertility. RNA sequencing data indicate that cisplatin triggers a systemic stress response, in which DAF-16/FOXO and SKN-1/NRF2, two conserved transcription factors, are key regulators. We determined that inhibition of the DNA damage-induced apoptotic pathway does not confer cisplatin protection to the animal. However, mutants for the pro-apoptotic BH3-only gene ced-13 are sensitive to cisplatin, suggesting a protective role of the intrinsic apoptotic pathway. Finally, we demonstrated that our system can also be used to identify mutations providing resistance to cisplatin and therefore potential biomarkers of innate cisplatin-refractory patients. We show that mutants for the redox regulator trxr-1, ortholog of the mammalian thioredoxin reductase 1 TRXR1, display cisplatin resistance. By CRISPR/Cas9, we determined that such resistance relies on the presence of the single selenocysteine residue in TRXR-1.Instituto de Salud Carlos III PI15/00895 PI16/01898European Regional Development Fund/FEDERNetherlands Organization for Scientific Research 711.014.005Sociedad Española de Oncología MédicaMinisterio de Economía y Competitividad BFU2007-67123 BFU2015-64408-PEuropean Social Fund BFU2015-64408-

    Male-female interactions drive the (un)repeatability of copula duration in an insect.

    Get PDF
    Across the animal kingdom the duration of copulation varies enormously from a few seconds to several days. Functional explanations for this variation are largely embedded within sperm competition theory in which males modulate the duration of copula in order to optimise their fitness. However, copulation is the union of two protagonists which are likely to have separate and often conflicting reproductive interests, yet few experimental designs specifically assess the effect of male-female interactions on the duration of copulation. This can result in inexact assertions over which sex controls copulatory behaviour. Here we analyse the repeatability of copulatory behaviour in the seed beetle Callosobruchus maculatus to determine which sex exerts primary influence over copulation duration. In C. maculatus, copulation follows two distinct phases: an initial quiescent phase followed by a period of vigorous female kicking behaviour that culminates in the termination of copulation. When males or females copulated with several novel mates, copulatory behaviour was not significantly repeatable. By contrast, when males or females mated repeatedly with the same mate, copula duration was repeatable. These data suggest copulatory behaviour in C. maculatus to be largely the product of male-female interactions rather than the consistent, sex-specific modulation of copula duration of one protagonist in response to the phenotypic variation presented by the other protagonist

    A New, Atypical Case of Cobalamin F Disorder Diagnosed by Whole Exome Sequencing

    Get PDF
    The Deciphering Developmental Disorders Study presents independent research commissioned by the Health Innovation Challenge Fund (HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (WT098051). The views expressed in this publication are those of the author(s) and not necessarily those of the Wellcome Trust or the Department of Health. The research team acknowledges the support of the National Institute for Health Research, through the Comprehensive Clinical Research Network.Peer reviewedPublisher PD

    Intra-ejaculate sperm selection in female zebra finches

    Get PDF
    Among internal fertilizers, typically fewer than 1% sperm survive the journey through the oviduct. Several studies suggest that the sperm reaching the ovum-the 'fertilizing set'-comprise a non-random sub-population, but the characteristics of this group remain unclear. We tested whether oviductal selection in birds results in a morphologically distinct subset of sperm, by exploiting the fact that the fertilizing set are trapped by the perivitelline layer of the ovum. We show that these sperm have remarkably low morphological variation, as well as smaller head size and greater tail length, compared with those inseminated. Our study shows that the morphological composition of sperm-rather than length alone-influences success in reaching the ovum

    Integrating population variation and protein structural analysis to improve clinical interpretation of missense variation: application to the WD40 domain

    Get PDF
    We present a generic, multidisciplinary approach for improving our understanding of novel missense variants in recently discovered disease genes exhibiting genetic heterogeneity, by combining clinical and population genetics with protein structural analysis. Using six new de novo missense diagnoses in TBL1XR1 from the Deciphering Developmental Disorders study, together with population variation data, we show that the β-propeller structure of the ubiquitous WD40 domain provides a convincing way to discriminate between pathogenic and benign variation. Children with likely pathogenic mutations in this gene have severely delayed language development, often accompanied by intellectual disability, autism, dysmorphology and gastrointestinal problems. Amino acids affected by likely pathogenic missense mutations are either crucial for the stability of the fold, forming part of a highly conserved symmetrically repeating hydrogen-bonded tetrad, or located at the top face of the β-propeller, where ‘hotspot’ residues affect the binding of β-catenin to the TBLR1 protein. In contrast, those altered by population variation are significantly less likely to be spatially clustered towards the top face or to be at buried or highly conserved residues. This result is useful not only for interpreting benign and pathogenic missense variants in this gene, but also in other WD40 domains, many of which are associated with disease

    Detection of structural mosaicism from targeted and whole-genome sequencing data.

    Get PDF
    Structural mosaic abnormalities are large post-zygotic mutations present in a subset of cells and have been implicated in developmental disorders and cancer. Such mutations have been conventionally assessed in clinical diagnostics using cytogenetic or microarray testing. Modern disease studies rely heavily on exome sequencing, yet an adequate method for the detection of structural mosaicism using targeted sequencing data is lacking. Here, we present a method, called MrMosaic, to detect structural mosaic abnormalities using deviations in allele fraction and read coverage from next-generation sequencing data. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) simulations were used to calculate detection performance across a range of mosaic event sizes, types, clonalities, and sequencing depths. The tool was applied to 4911 patients with undiagnosed developmental disorders, and 11 events among nine patients were detected. For eight of these 11 events, mosaicism was observed in saliva but not blood, suggesting that assaying blood alone would miss a large fraction, possibly >50%, of mosaic diagnostic chromosomal rearrangements

    Five year state plan

    Get PDF
    This is the five-year state plan for the South Carolina Developmental Disabilities Council for 2021-2026. The goals include objectives relating to employment, community supports, and self-advocacy

    Easing the transition to secondary education for children with autism spectrum disorder: An evaluation of the Systemic Transition in Education Programme for Autism Spectrum Disorder (STEP-ASD)

    Get PDF
    In mainstream education, the transition from primary to secondary school ('school transition') is difficult for children with autism spectrum disorder, being marked by high levels of emotional and behavioural difficulties. The Systemic Transition in Education Programme for Autism Spectrum Disorder (STEP-ASD) is a new, manualised school transition intervention. We investigated its feasibility and efficacy for children diagnosed with autism spectrum disorder (N = 37; mean age = 11.47 years; mean IQ = 85.24) using an unblinded, non-randomised, controlled design. Teachers found the intervention feasible and acceptable. Children receiving STEP-ASD (n = 17) showed a large (Cohen's d = 0.88) reduction in school-reported emotional and behavioural difficulties, whereas controls (n = 20) showed a slight increase (d = -0.1) (p = 0.010). These encouraging findings suggest the value of STEP-ASD as a low-intensity intervention for reducing problem behaviours and distress in children with autism spectrum disorder as they transition to mainstream secondary school
    corecore