42 research outputs found

    Progress of the LUNEX5 Project

    Get PDF
    http://accelconf.web.cern.ch/AccelConf/FEL2013/papers/wepso05.pdfInternational audienceLUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation) aims at investigating the production of short, intense, and coherent pulses in the soft X-ray region. A 400 MeV superconducting linear accelerator and a laser wakefield accelerator (LWFA), will feed a single Free Electron Laser line with High order Harmonic in Gas and Echo Enable Harmonic Generation seeding. After the Conceptual Design Report (CDR), R&D has been launched on specific magnetic elements (cryo-ready 3 m long in-vacuum undulator, a variable strong permanent magnet quadrupoles), on diagnostics (Smith-Purcell, electro-optics). In recent transport studies of a LWFA based on more realistic beam parameters (1 % energy spread, 1 μm beam size and 1 mrad divergence) than the ones assumed in the CDR, a longitudinal and transverse manipulation enables to provide theoretical amplification. A test experiment is under preparation. It is noted in this context that among the French scientific community's interest in experiments at operating FELs is increasing

    LUNEX5: A French FEL Test Facility Light Source Proposal

    Get PDF
    http://accelconf.web.cern.ch/AccelConf/IPAC2012/papers/tuppp005.pdfInternational audienceLUNEX5 is a new Free Electron Laser (FEL) source project aimed at delivering short and coherent X-ray pulses to probe ultrafast phenomena at the femto-second scale, to investigate extremely low density samples as well as to image individual nm scale objects

    The LUNEX5 project

    Get PDF
    http://accelconf.web.cern.ch/AccelConf/FEL2012/papers/froa03.pdfInternational audienceLUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation) aims at investigating the production of short, intense, and coherent pulses in the soft X-ray region. The project consists of a Free Electron Laser (FEL) line enabling the most advanced seeding configurations: High order Harmonic in Gas (HHG) seeding and Echo Enable Harmonic Generation (EEHG) with in-vacuum (potentially cryogenic) undulators of 15 and 30 mm period. Two accelerator types feed this FEL line : a 400 MeV Conventional Linear Accelerator (CLA) using superconducting cavities compatible with a future upgrade towards high repetition rate, for the investigations of the advanced FEL schemes; and a 0.4 - 1 GeV Laser Wake Field Accelerator (LWFA), to be qualified in view of FEL application, in the single spike or seeded regime. Two pilot user experiments for timeresolved studies of isolated species and solid state matter dynamics will take benefit of LUNEX5 FEL radiation and provide feedback of the performance of the different schemes under real user conditions

    Field Emission Studies During ESS Cryomodule Tests at CEA Saclay

    No full text
    International audienceFor the development of efficient superconducting cavi-ties, field emission is an important parasitic phenomena to monitor. A diagnostic system composed of Geiger-Mueller (G-M) probes, NaI(Tl) scintillators are placed in the cryomodule test stand. Collected data is analysed and confronted to particle tracking simulation and electro magnetic shower code. With such systematic analysis we aim to identify the most probable field emission location and hence help to improve clean procedures during as-sembly and operation

    Instrumentation for High Performance Cavities and Cryomodule Field Emission Analysis

    No full text
    International audienceField emission (FE) is one of the main reasons for the degradation of accelerator cryomodules, as field emitted current tends to become more severe during the beam operation. It is essential to better understand how this phenomenon is generated and evolves from the SRF cavity preparation in the clean room, through their assembly in the cryomodule until their final test and operation. Due to the shielding environment of a cavity in its vertical test stand, or the architecture of a cryomodule, the more faint radiation occurring at the FE onset remains undetected. More precise diagnostic and analysis tools are required to gain more information. We present the developpement of dedicated time-resolved detectors for the FE radiation which aim at improving its coverage in terms of solid angle and lower energy threshold sensitivity. We approach this topic through detailed simulation based on the Geant4 toolkit in order to analyse the interaction of FE radiation with the cavity environement and optimize the detectors with respect to their application in cryomodule or vertical test stands. We illustrate by analysing recent cryomodule experimental test data

    Field Emission Studies on ESS Elliptical Prototype Cavities at CEA Saclay

    No full text
    International audienceCEA Saclay is in charge of the cavity prototypes that is designing, manufacturing, testing and integrating them into demonstrator cryomodules. We have manufactured 6 medium beta and 5 high beta cavities. As part of these activities we are interested in field emission as one of the limiting factors for cavity performances. We are currently collecting data from cavities operated in vertical cryostat and inside cryomodules. Analysis are carried out by means of particle tracking simulation and comparison with radiation dose monitor and scintillators

    The ESS Elliptical Cavity Cryomodules

    No full text
    The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today's leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. The superconducting section of the Linac accelerates the beam from 80 MeV to 2.0 GeV. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. These cryomodules contain four elliptical Niobium cavities operating at 2 K and at a frequency of 704.42 MHz. This paper introduces the thermo-mechanical design, the prototyping and the expected operation of the ESS elliptical cavity cryomodules. An Elliptical Cavity Cryomodule Technology Demonstrator (ECCTD) will be built and tested in order to validate the ESS series production

    Analysis of the Results of the Tests of IFMIF Accelerating Units

    No full text
    International audienceThe prototype IFMIF-EVEDA cryomodule encloses eight superconducting 175 MHz β=0.09 Half-Wave Resonators (HWR). They are designed together with the power coupler to accelerate a high intensity deuteron beam (125 mA) from to 5 to 9 MeV. Two cavity packages, complete with tuning system and power couplers, have been tested in a dedicated horizontal test cryostat - SaTHoRI (Satellite de Tests HOrizontal des Résonateurs IFMIF). The successful operational equivalent tests and tuning of the SRF accelerating units is reported
    corecore