38 research outputs found
A eubacterial origin for the human tRNA nucleotidyltransferase?
tRNA CCA-termini are generated and maintained by tRNA nucleotidyltransferases. Together with poly(A) polymerases and other enzymes they belong to the nucleotidyltransferase superfamily. However, sequence alignments within this family do not allow to distinguish between CCA-adding enzymes and poly(A) polymerases. Furthermore, due to the lack of sequence information about animal CCA-adding enzymes, identification of corresponding animal genes was not possible so far. Therefore, we looked for the human homolog using the baker's yeast tRNA nucleotidyltransferase as a query sequence in a BLAST search. This revealed that the human gene transcript CGI-47, (\#AF151805) deposited in GenBank is likely to encode such an enzyme. To identify the nature of this protein, the cDNA of the transcript was cloned and the recombinant protein biochemically characterized, indicating that CGI-47 encodes a bona fide CCA-adding enzyme and not a poly(A) polymerase. This confirmed animal CCA-adding enzyme allowed us to identify putative homologs from other animals. Calculation of a neighbor-joining tree, using an alignment of several CCA-adding enzymes, revealed that the animal enzymes resemble more eubacterial ones than eukaryotic plant and fungal tRNA nucleotidyltransferases, suggesting that the animal nuclear cca genes might have been derived from the endosymbiotic progenitor of mitochondria and are therefore of eubacterial origin
Positive cross-correlations induced by ferromagnetic contacts
Due to the Fermionic nature of carriers, correlations between electric
currents flowing through two different contacts attached to a conductor present
a negative sign. Possibility for positive cross-correlations has been
demonstrated in hybrid normal/superconductor structures under certain
conditions. In this paper we show that positive cross-correlations can be
induced, if not already present, in such structures by employing ferromagnetic
leads with magnetizations aligned anti-parallel to each other. We consider
three-terminal hybrid structures and calculate the mean-square correlations of
current fluctuations as a function of the bias voltage at finite temperature.Comment: 6 pages, 5 figures; accepted version by PRB, figures replace
Quantum magnetism in two dimensions: From semi-classical N\'eel order to magnetic disorder
This is a review of ground-state features of the s=1/2 Heisenberg
antiferromagnet on two-dimensional lattices. A central issue is the interplay
of lattice topology (e.g. coordination number, non-equivalent nearest-neighbor
bonds, geometric frustration) and quantum fluctuations and their impact on
possible long-range order. This article presents a unified summary of all 11
two-dimensional uniform Archimedean lattices which include e.g. the square,
triangular and kagome lattice. We find that the ground state of the spin-1/2
Heisenberg antiferromagnet is likely to be semi-classically ordered in most
cases. However, the interplay of geometric frustration and quantum fluctuations
gives rise to a quantum paramagnetic ground state without semi-classical
long-range order on two lattices which are precisely those among the 11 uniform
Archimedean lattices with a highly degenerate ground state in the classical
limit. The first one is the famous kagome lattice where many low-lying singlet
excitations are known to arise in the spin gap. The second lattice is called
star lattice and has a clear gap to all excitations.
Modification of certain bonds leads to quantum phase transitions which are
also discussed briefly. Furthermore, we discuss the magnetization process of
the Heisenberg antiferromagnet on the 11 Archimedean lattices, focusing on
anomalies like plateaus and a magnetization jump just below the saturation
field. As an illustration we discuss the two-dimensional Shastry-Sutherland
model which is used to describe SrCu2(BO3)2.Comment: This is now the complete 72-page preprint version of the 2004 review
article. This version corrects two further typographic errors (three total
with respect to the published version), see page 2 for detail